因数与倍数教案【热选8篇】

网友 分享 时间:

因数与倍数的教学内容包括定义、关系及应用,通过实例和练习帮助学生理解,培养逻辑思维和解决问题的能力,增强数学素养。下面是勤劳的小编为大家分享的因数与倍数教案【热选8篇】范例,欢迎借鉴参考。

《因数和倍数》教学设计【第一篇】

教学内容九年义务教育人教版小学数学五年级下册第二单元“倍数和因数”。

教学目标:

1、 通过练习,使学生进一步理解倍数和因数,奇数和偶数,素数和合数的意义。

2、 使学生进一步掌握2、3、5的倍数的特征。

3、 让学生进一步体会探索数的一些特征和方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。

4、 让学生进一步体会到数学内容的奇妙、有趣,产生对数学知识的好奇心。

练习背景:

学生在练习之前已经初步掌握了倍数、因数、奇数、偶数、素数、合数的意义。掌握了求一个数的倍数或因数的方法及其特点。学生还在学了因数和倍数的基础上发现了2、5、3的倍数的特征,根据特征能判断一个数是否是2、5、3的倍数。学习完这些概念后,很有必要对这部分知识做个梳理与练习,使学生对这些概念有进一步的理解和掌握。所以教材安排了两课时的练习,第一课时练习有关倍数和因数,以及2、3、5的倍数的特征的知识。第二课时主要以练习素数和合数概念为主,以及这些概念的比较与区分。本课是在第一课时练习的基础上进一步的巩固提高练习。通过本课的练习,进一步帮助学生清晰理解各个概念,区别容易混淆的几个概念,提高学生的数学水平。

练习设计:

一、 谈话导入:

同学们,在本单元我们学习了很多概念,上节课我们针对有关倍数、因数的概念以及2、3、5倍数的特征进行了练习,除了这些我们在这单元还学习了什么概念呢?

(设计意图:在练习之前,引导学生对学习的旧知进行回顾,唤起学生对知识的主动回忆,我估计学生都能想到还学习了素数和合数这两个概念。)

指出:今天我们这节课主要就素数和合数概念以及前面的几个概念进行一个综合练习。

二、 基本练习:

1、仔细推敲,对号入座。

在2、15、6、10、45这些数中,谁是谁的因数,谁是谁的倍数?

2、自己举个例子说说谁是谁的因数,谁是谁的倍数?

3、说一说上面这些数中哪些是奇数,哪些是偶数?

(设计意图:这里我列出了5个数字,让学生直接说出谁是谁的因数,谁是谁的倍数,相对于学生根据乘法或除法说出因数与倍数关系要稍微复杂和抽象了一些。这个练习主要帮助学生回顾梳理有关因数和倍数以及奇数和偶数的概念。)

过程及意图:

1、 先自己与同桌说一说,你能和同桌说的不一样吗?

2、 集体交流。

(设计意图:先让学生自己相互说一说,是给学生的思维一个缓冲,由于答案不是唯一的,这里不一定让学生说出全部,可以在集体交流时引导:“还有不一样的吗?”使其完整。教师不需要都板书,可以选择其中一种写一写。)

3、 自己再举例说明因数和倍数关系。

(设计意图:我设计这样一个开放性的练习,是为了让学生对因数和倍数的概念认识地更深入些。注意让多个学生说一说,学生在说一个数的因数或倍数时,提问:这个数的因数或倍数还有哪些?从而回顾因数与倍数的特点。)

4、说说这些数中哪些是奇数哪些又是偶数?

(设计意图:让学生先结合具体的数说说哪些是奇数哪些是偶数,然后引导学生有具体到抽象,回忆出什么叫奇数,什么叫偶数?我们是怎样判断奇数和偶数的?对奇数偶数的概念也做个简单的回顾,为下面这些概念的综合练习做个铺垫。)

二、对比练习

1、 找出下面每组数中的素数。

(1)19  29  39   49

(2)5   15  25   35

(3)17  27  37   47

2、 判断下面的数是素数还是合数,并说说理由。

2  21  11  45  77

(设计意图:这是书上练习六第8题,安排这个练习主要是有关素数和合数的概念的练习,通过练习使学生进一步明确什么叫素数?什么叫合数?掌握判断素数或合数的方法。后面是我自己设计的一个练习,在第一个练习完后用卡片出示,通过这五个数字的判断让学生熟练掌握判断方法。)

过程及意图:

1、 先说一说什么叫素数?什么叫合数?判断一个数是素数还是合数看什么?

(设计意图:在判断之前先帮助学生回顾有关概念及判断方法,为下面的判断练习做个铺垫,我估计一下子让学生判断对于中差生来说可能有些遗忘,一下子不知道如何下手,所以先安排了这样一个说一说。)

2、 学生在书上把素数圈出来。

3、 集体交流。

(设计意图:有了前面的回顾,学生在判断的时候有了目标,这里要注意两个问题,一是,突出素数与合数的比较。如果是素数要让学生说说为什么?如果不是,更要让学生说说为什么不是?二是,要充分利用好学生中的错误资源,让学生在错误中寻找到判断的好方法。我估计在49的判断上学生会出现意见分歧,因为一般情况学生只会去思考除了1和本身是否有因数2、5、3而忽略了有没有因数7,所以在这时要注意在错误中分析原因,并且帮助学生找到判断方法——不仅要看看是否有因数2、3、5还要注意看看是否有因数7,有时甚至还要更大,这里� )

4、 比较发现。

问:比一比每组数有什么特点?判断完后你有些什么体会?

(设计意图:这里教材安排的每组数的各位数字都相同,我估计学生这个现象都能发现,关键是让学生谈谈体会,先可以让学生自由地说一说,如果有困难可以问:从中体会到一个数是否是素数与什么无关?而与什么有关?让学生体会与各位数字无关,我们要看这个数因数的个数。因为在以往的教学中,同学们常常会在各位是7或9的数的判断上出现教多的错误。这样使学生对素数的认识更加深刻。)

三、 综合练习

1、用“〇”圈出表中所有的素数,用“△”圈出表中所有的偶数。

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(设计意图:以往教学下来我发现学生对奇数与素数、偶数与合数往往混淆不清,这是为了区分这些概念而设计的。这里呈现一张具体的表格,让学生根据表格的现象主动区分不同的概念,体会到他们是不同的概念,但它们之间也有一定的联系,素数中有偶数,偶数里有素数。形象直观的表格避免了对这些问题进行抽象的,甚至文字游戏式的机械操练。也有利学生的理解和掌握。)

3、 判断下面的说法正确吗?不对的改正。

(1)只有两个因数的数叫做素数。  ( )

(2)1是素数。          ( )

(3)自然数中除了奇数其他都是偶数。( )

(4)自然数中除了素数其他都是合数。 ( )

(5)所有的偶数都是合数。   ( )

(设计意图:这个练习是对容易混淆的概念,进行比较和区分设计的。通过练习让学生进一步明确概念的区别和联系。)

过程及意图:

1、 用“〇”圈出表中所有的素数

2、 集体校对。

(设计意图:找素数和偶数我估计学生没有多大的困难,在校对过程中,注意引导学生思考这个问题:同学们用“〇”圈出了素数,那没有圈出来的是什么数呢?我估计有些学生马上会脱口而出“都是合数”,而后会有学生发现问题反驳这种观点,设计这个提问一是进一步理解素数、合数的概念,明确1既不是素数也不是合数,也为下面有关自然数的分类做铺垫。)

3、 用“△”圈出表中所有的偶数。

4、 集体校对

(设计意图:这里也同上引导学生思考这个问题:没有打△的都是什么数,让学生进一步明确自然数中不是偶数就是奇数。)

5、 探索规律:观察表格,你有什么发现?你有没有发现什么特别的数?

(设计意图这里改变了书上提问,不直接问:所有的素数都是奇数吗?所有的偶数都是合数吗?而是提了一个开放性的问题,先让学生自己说说自己的想法,我估计通过表格的直观呈现,“2”既打上了“〇”又打上了“△”就形象地说明了2既是素数又是偶数,充分地说明了素数中有偶数,偶数里也有素数。这里表达的方式可以多一些,只要学生说的意思正确即可。)

《因数和倍数》数学教案【第二篇】

教学目标

1、知识与技能

掌握因数、倍数的概念,知道因数、倍数的相互依存关系。

2、过程与方法

通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。

3、情感态度与价值观

使学生感悟到数学知识的内在联系的逻辑之美。

教学重难点

教学重点

掌握找一个数的因数、倍数的方法。

教学难点

能熟练地找一个数的因数和倍数。

教学工具

课件、投影

教学过程

一、迁移引入

同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)

这些自然数。(课件去“0”)

去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。

板书:因数和倍数

二、情境创设,探究新知

1、理解整除的意义。

(1)出示例1,在前面学习中,我们见过下面的算式。

12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=

26÷8= 20÷10=2 21÷21=1 63÷9=7

你能把这些算式分类吗?

(2)分类所得:

12÷2=6 20÷10=2

30÷6=5 21÷21=1

63÷9=7

8÷3=2……2 9÷5=

19÷7=2……5 26÷8=

(3)观察发现,合作交流。

观察算式,说一说谁是谁的倍数,谁是谁的约数。

2、理解因数、倍数的意义。

12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)

3、总结归纳

(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

(2)因数与倍数是相互依存的关系。

4、注意:

为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。

5、做一做。

下面的4组数中,谁是谁的因数?谁是谁的倍数?

4和24 36÷13 75÷25 81÷9

6、教学例2

18的因数有哪几个?

18的因数有1、2、3、6、9、18。

也可以这样用图表示。

18的因数

1,2,3,

6,9,18

30的因数有哪些?36呢?

7、教学例3

2的倍数有哪些?

2的倍数有2、4、6、8……

2的倍数

2,4,6,

8,10,12,

14,……

3的倍数有哪些?5呢?

8、小组讨论,归纳总结

一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

课后小结

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

课后习题

1、填空。

(1)36是4的( )数。

(2)5是25的( )。

(3)是的( )倍。

2、下面各组数中,有因数和倍数关系的有哪些?

(1)18和3 (2)120和60 (3)45和15 (4)33和7

3、24和35的因数都有哪些?

板书

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

《倍数与因数》教案【第三篇】

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套人教新课标版五年级下册《因数和倍数》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

第二单元

因数和倍数

课题:因数和倍数

教学目标:

1、同学掌握找一个数的因数,倍数的方法;

2、同学能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养同学的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让同学各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?同学写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的'因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

同学尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让同学完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

课后反思:

《因数和倍数》教学设计【第四篇】

教学过程:

一,创设情境,明确相互依存的关系。

师:同学们,我们人与人之间存在着各种关系,比如说(指某位同学)他同他的爸爸是什么关系呢?(父子关系)老师和你们是——师生关系。

师:“老师是师生关系”可以这样说吗?为什么?

生:师生关系是指老师和学生之间的相互关系,不能单独说。

师:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。

二、动手操作,感受并认识因数和倍数

(一)、新课引入:

1、师:同学们的桌上都放着12个同样大的正方形,请你用这12个正方形拼成一个长方形,注意每排摆几个?摆了几排?用乘法算式表示你的摆法。

2、进行交流:

师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?

师:还有其它摆法吗?

还有不同的乘法算式吗?猜一猜,他是怎样摆的?

学生交流几种不同的摆法。随着学生交流屏幕上一一演示。

师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示,千万别小看这些算式,这节课我们就从这些算式中学习两个重要的数学概念”因数和倍数”。(板书课题)

师:我们以一道乘法算式为例。(屏幕出示)

43=12,

师:在这个算式中,4、3、12有什么关系呢?

我们一起来读一读:

因为:43=12,

所以:4是12的因数,3也是12的因数。

12是4的倍数,12也是3的倍数。

师:读读看,能读懂吗?说一说读后你想到了什么?

生:乘法算式中,两个数存在因数和倍数的关系。

师:他的说法正确吗?我们来继续读。

出示:因为:62=12 ,所以——

2和6是12的因数,12是2和6的倍数。

因为:112=12 ,所以——

生: 1和12是12的因数,12是1和12的倍数。

师:请把书打到12页,齐读最后自然段的注意。

生:注意,为了方便,在研究因数和倍数的时候,我们所说的数指的是的整数(一般不包括0)。

师:现在你们能把存在因数和倍数关系的条件说得更准确些吗?

生:在非0的整数乘法算式中,两个数之间存在因数和倍数关系。

师:谁也来出个乘法算式说一说。(略)

课件出示:32÷4=8,你能从这个算式中找到因数和倍数吗?

师:我们不仅可以根据乘法算式找因数和倍数,也可以根据除法算式找因数和倍数。 二、创设情境,自主探究找因数和倍数的方法。

1、师:我们刚才初步认识了因数和倍数,明白了因数和倍数都表示几个数之间的关系?(两个)。所以,不能单说哪个数是倍数,哪个数是因数。下面我们进一步来研究因数和倍数。

屏幕显示:

试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

2、3、5、9、18、20

师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

生:2、3、9、18都是18的因数。

师:18的因数只有这4个吗?

师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。请你选择你喜欢的方式,可以同桌合作,小组合作,也可以独立完成,找出18的所有因数。如果能把怎么找到的方法写在纸上就更好了。

生:写后小组内交流。

学生填写时师巡视搜集作业。

2、交流作业。(略)

投影仪出示学生的不同作业。交流找因数的方法。

师:出示18的因数有:1、18;2、9;3、6;

你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

师:用乘法和除法找都可以,�

板书:18的因数有:1、2、3、6、9、18。

师:18的因数也可以这样表示。(课件出示集合圈图)

组织交流:

通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

突出要点:有序(从小往大写),一对对找(哪两个整数相乘得这个数),再按从小到大的顺序写出来。

用我们找到的方法,试一个。

课件出示:

填空:

24=124=2( )=( ) ( )=( ) ( )

24的因数有:_______________

再试一个:16的因数有

师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?

生:因为44=16,只写一个4就可以了。

师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

生:18的因数有6个,最小的是1,最大的是18.

16的因数有5个,最小的是1,最大的是16.

师:谁能把同学们的发现,用数学语言概括起来。先说给小组同学听。

边交流边板书:

个数 最小 最大

因数 有限 1 它本身

倍数

《倍数与因数》教案【第五篇】

设计说明

《数学课程标准》指出:学生是数学学习的主人,教师只是学生学习的组织者、引导者和合作者。本课主要是在教师的引导下,让学生通过自主探索、合作交流、归纳总结的方式获得新知,这样真正做到把课堂还给学生,让学生真正成为学习的主人。本课教学在设计上主要有以下特点:

1.新课伊始,利用学生熟悉的生活中人与人之间关系的情境引入,不仅可以激发学生学习的兴趣,同时还能使学生初步感知事物之间的关系是相互依存的,为学生探究新知奠定基础。

2.结合运动会上两个班排出的队形图列出乘法算式来认识倍数与因数。使数学教学紧密联系学生的生活实际,有效地激发学生的学习兴趣,使学生积极主动地参与到学习中去。本环节设计小组自学活动,让学生在小组内完成对倍数与因数的`认识。学生通过阅读、质疑、交流,逐步形成自学能力,体验到自主学习的快乐。

3.在小组内交流判断谁是7的倍数,通过合作交流让学生掌握不同的方法,以开发学生的创新思维。

课前准备

教师准备PPT课件百数表

教学过程

⊙创设情境,导入新课

师:同学们,我们人与人之间存在着各种关系,谁能说一说自己与爸爸的关系是什么?

生1:父子关系。

生2:父女关系。

师:那么你们与老师又是什么关系呢?

生:师生关系。

师:能说老师是师生关系吗?

生:不能。

师小结:是啊,人与人之间的关系不是独立的,是相互依存的。在数学王国里,也有一些存在着相互依存关系的数,它们就是倍数与因数。(板书课题)

设计意图:让学生知道数学知识的学习离不开生活,通过生活中人与人之间的关系引入,初步感知关系是相互的,同时使学生感受到数学与生活的联系,从而激发学生学习数学的兴趣。

⊙自主探究,合作交流

1.认识倍数与因数。

(1)课件出示教材31页第一个问题。

师:仔细观察两个班的队形,请你算一算两班各有多少人。

(2)交流计算结果。

9×4=36(人) 5×7=35(人)

(3)回顾乘法算式各部分的名称。

师:请你们说一说这两个算式里各部分的名称。(学生任选一题,说出各部分的名称)

师:这两个乘法算式里就有我们今天要研究的内容。现在请同学们自学教材31页“认一认”,并思考下面的问题。(课件出示教材31页第二个问题)

思考:①读了智慧老人的话,你知道了什么?

②关于倍数与因数,你发现了什么?

预设生1:在算式9×4=36中,36是9和4的倍数,9和4是36的因数。

生2:在算式5×7=35中,35是5和7的倍数,5和7是35的因数。

生3:倍数与因数指的是乘法算式中积和乘数之间的关系。

生4:在学习倍数与因数时,只在非0自然数范围内研究。

(4)质疑:在算式5×7=35中,能说5和7是因数,35是倍数吗?为什么?

学生讨论后师指出:倍数与因数是两个数之间的关系,是相互依存的。叙述时一定要说清楚谁是谁的倍数,谁是谁的因数。

《因数与倍数》小学教案【第六篇】

学习内容:

人教版小学数学五年级下册第17、18页。

学习目标:

1、我能掌握2、5的倍数的特征,并利用特征判断一个数是不是2、5的倍数。

2、我知道什么是奇数和偶数。

学习重点:

了解2、5的倍数的特征及奇数和偶数的含义。

学习难点:

能正确地求出符合要求的数。

学前准备:

收集电影票。

教学过程:

一、导入新课

二、检查独学

1、互动,检查独学部分第1、2题完成情况。

2、质疑探讨。

三、合作探究

(一)2、5的倍数的特征

1、小组合作。

仔细回顾独学题2,再与同伴分享自己的收获。

2、小组代表展示汇报。

3、小组合作交流,验证规律。

讨论:是不是所有2的倍数个位上都是0、2、4、6、8?所有5的倍数个位上都是5或0呢?

我们的想法:

小组代表汇报、总结。

4、试试身手。

(1)独立完成第18页“做一做”。

(2)集体交流。我又发现了 :

(二)奇数和偶数

1、自主阅读教材。根据自学内容,我知道:

根据是否是2的倍数,可把自然数分为 和 两类。是2的倍数的数叫做 ,不是2的倍数的数叫做 。

2、组内交流,并讨论:0是不是2的倍数?为什么?

3、汇报总结。

4、我能说出身边的奇数和偶数。

5、做一做(第17页)。

《因数和倍数》数学教案【第七篇】

设计说明

1.动手操作,激发学生的学习兴趣。

由于数学知识比较抽象,学生不易理解,缺乏兴趣,而兴趣是学生获取知识,提高学习质量的动力。对于小学生来说,动手操作是激发学生兴趣切实可行的好方法,新课伊始,利用数字卡片组除法算式引入,不仅可以激发学生的学习兴趣,同时还能使学生初步感知算式中各数的关系是相互的,为学生探究新知奠定基础。

2.合作学习,培养合作意识,形成自学能力。

数学教学要紧密联系学生的生活,创设有助于学生自主学习、合作交流的情境。教学中结合除法算式设计小组同学自学倍数与因数的概念的活动,并通过知识的迁移,要求学生利用18的乘法算式说说谁是18的因数。这样学生在阅读、质疑、交流中,逐步形成自学能力,体验自主学习的快乐。

课前准备

教师准备PPT课件

学生准备数字卡片

教学过程

⊙活动导入

1.用下面的数字卡片组除法算式。(生认真观察并列出算式)

2.导入:可别小看这些除法算式,今天我们要研究的因数和倍数就在这里。

设计意图:通过组除法算式,为学生自主建构概念提供准备,同时沟通与新知识的联系。把学生引入新内容的情境,并让学生明确本节课的学习目标。

⊙自学因数和倍数的概念

1.学生独立把上面的算式分类,并阅读教材5页的内容,自学因数和倍数的概念。

2.通过讨论明确:

(1)为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。

(2)在这节课我们所说的因数不是以前乘法算式中的因数,二者不能混淆。

3.汇报:

(1)看黑板上的算式,说说谁是谁的因数,谁是谁的倍数。

(2)出示算式c÷a=b,(a,b,c都是不为0的自然数)让学生说说在这个算式中谁是谁的因数,谁是谁的倍数。

4.强调:因数和倍数是相互依存的。阐述因数和倍数时,一定要说清楚谁是谁的因数,谁是谁的倍数。

⊙探究找一个数的因数和倍数的方法

一、探究找一个数的因数的方法。

1.出示教材6页例2:18的因数有哪几个?

(1)提问:怎样去找18的因数呢?(同桌互相讨论,然后汇报)

(2)汇报:第一种方法,列出积是18的乘法算式,得到18的因数有1,2,3,6,9,18;第二种方法,列出被除数是18的除法算式,得到18的因数有1,2,3,6,9,18。

(3)讨论:无论是乘法算式还是除法算式,在思考时都要注意什么?(要从最小的数找起,都是非0的自然数)

(4)书写:在书写一个数的因数时要注意什么?(要注意一头一尾地成对写因数,这样做不容易漏写)

(5)介绍集合图:18的因数也可以像这样表示,如图:18的因数

我们称它为集合图,这就是用集合图表示因数的方法。

2.练习。

教材7页2题(1)。

《因数与倍数》小学教案【第八篇】

[教学内容]

数的奇偶性

[教学目标]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学重、难点]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学过程]

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律

先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

[板书设计]

数的奇偶性

例子: 结论:

12 + 34 = 48 偶数+偶数=偶数

11 + 37 =48 奇数+奇数=偶数

12 + 11 =23 奇数+偶数=奇数

20 3468815
");