《因数与倍数》教案【精选4篇】
【前言导读】此篇优秀教案“《因数与倍数》教案【精选4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《因数与倍数》小学教案【第一篇】
设计说明
1.自主学习,构建知识网。
一位学者曾说过:“今后的文盲不再是不识字的人,而是那些不会学习的人。”所以当今社会,自主学习就显得尤为重要。因此本节课在设计上,着重引导学生自主将这部分内容进行归纳和整理,形成全面的结构图,既培养了学生整理信息的能力,又使他们对所学知识有一个完整的、系统的印象,在头脑中形成清晰的思路。
2.重点复习,强化提高。
在复习过程中先使学生进一步明确因数与倍数的概念及2、5、3倍数的特征。然后在小组内合作整理相关知识,把这部分内容梳理后,教师结合学生的汇报引导学生系统地复习有关倍数和因数的知识。最后通过练习巩固这部分的知识点。
课前准备
教师准备PPT课件
学生准备习题卡
教学过程
回顾整理,建构知识网络
1.同学们回忆一下,因数与倍数这一单元最基本的概念有什么?
2.小组合作,整理“因数与倍数”的相关知识,对所学的知识用自己喜欢的方式进行整理,对有特色的整理方式可以在班内交流。
3.把整理的内容在班内交流,展示学生作品。
因数与倍数
4.教师组织学生汇报,引导学生系统地复习有关因数与倍数的知识,试着举例说明。(板书重点知识)
设计意图:在小组合作中梳理因数与倍数的相关知识,使学生对数的概念有进一步的认识。
⊙重点复习,强化提高
1.课件出示教材118页1题,学生独立完成后汇报结果。
(1)根据2的倍数的特征:“个位上是0,2,4,6,8的数都是2的倍数”,可以看出56,204,630,22,78这五个数符合条件,它们都是2的倍数。
(2)根据5的倍数的特征:“个位上是0或5的数都是5的倍数”,可以看出195,630,65这三个数符合条件,它们都是5的倍数。
(3)根据3的倍数的特征:“一个数各个数位上的数的和是3的倍数,这个数就是3的倍数”,可以看出87,195,204,630,57,78这六个数符合条件,它们是3的倍数。
(4)根据质数的特征:“只有1和它本身两个因数”,可以看出79,31,83这三个数是质数。
(5)根据合数的特征:“除了1和它本身还有其他因数”,可以看出除了79,31,83这三个质数,其他的数都是合数。
(6)根据奇数的特征:79,87,195,31,57,65,83这七个数是奇数。
《因数与倍数》教案【第二篇】
教学目标:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:
理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12、
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:11÷2=5……1、问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0×3 0×10
0÷3 0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
三、课堂练习
1、下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2、下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3、在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4、游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①是4的倍数
是60的因数
是5的倍数
是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
《因数与倍数》教案【第三篇】
一、认识倍数和因数
(1)师:一起看大屏幕,数一数,几个正方形?(12,12就是一个自然数)你能把12个正方形摆成一个长方形吗?你有几种摆法呢?你能用乘法算式把你心中的摆法表示出来吗?
(2)学生写算式后汇报
师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?
师:还有其它摆法吗? 还有不同的乘法算式吗?猜一猜,他是怎样摆的?
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:34=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 34=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)
(3)师:这儿还有两道乘法算式,选你喜欢的一个,说一说谁是谁的因数?谁是谁的倍数?
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
二、创设情境,自主探究找因数和倍数的方法。
(一)探索找因数的方法
1、(屏幕显示):试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数吗?先自己试一试。 3、5、18、20、36
生说略。还有补充的吗?能不能说3是20的因数?
师:师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才沈老师好像听到有好几个都是36的因数,你们发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?(3、18……)还有谁?36
师:3、18、36都是36的因数,只有这3个吗?(1、2、……)
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9; 6
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什* *么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗?
生:可以用除法找。用36除以1得36,36和1就是36的因数。再用36除以2……
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)
师:我也是跟你们一样很有顺序,从1开始找的。我们一起来写出36的因数,好吗?根据算式,一对对找,找到了1就找到了36,找到了2就找到了18,依此类推,按从小到大的顺序排列。(板书:36的因数有:1、2、3、4、6、9、18、36。) 写的时候可以一头一尾地写。这样也可以做到答案的有序性。
师:36的因数还可以这样表示。(小黑板:板书集合圈图)
4、启迪思考。
师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
师:36的所有因数已经找到,那你能运用刚才的方法找一找20,18,5的因数吗?试着在圈中填一填。20的因数 18的因数 5的因数
5、发现一个数因数的特征
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)
师(小结):一个非零自然数的最小因数是1,最大因数是它本身,因数的个数是有限的。
四、巩固练习。
师:刚才同学们认识了因数与倍数,并且掌握了求一个数因数和倍数的方法,想不想检测一下自己掌握的如何?
1、判一判。(小黑板出示)
2、填一填。
《因数与倍数》小学教案【第四篇】
教学内容:
7--16页的学习内容
教学目标
1.进一步学习求一个数的所有因数和倍数;掌握一般方法,学会用常见的几种形式表达。
2.经过多次的求解经历过程,在事实面前让学生进一步明确因数是可数的,自然得出因数的个数是有限的,其中最大的因数自己;而倍数是无法写完全,也就是说倍数的个数是无限的,其中最小的倍数也是自己。
教学重点:
掌握求一个数的因数和倍数的常用方法及常用的几种书写表达形式
教学难点:
完整地求出一个数的因数和倍数
教学准备:
实物投影
教学活动
(一 )基础训练
口答
根据下面算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数?
4×9=36 25×40=100032×7=224
解答题
18的因数有哪些?10是哪些数的倍数?
(二) 新知学习
典型例题
1.教学:
(1)你还能找出18的因数码?并说出你的找法(要板书)。
(2)小比赛。看谁既快又能完整地把30和36所有因数找出来?
(3)分享冠军经验(介绍方法)。
(4)咱们再来一次寻找32和48的所有因数的比赛?
(5)请你试着把18所有找出的因数表述出来。(如果学生能用常见的两种表达最好;如果不能需要教师的引导)
第一种习惯书面表达形式。18的因数有(有可能是乱的):
第二种集合图的书面表达形式。 18的因数
(6)通过眼看,自我感觉调整这些因数最好按序排列
第一种习惯书面表达形式。18的因数有(按大小顺序):
第二种集合图的书面表达形式。 18的因数
(7)做基础练习第2题
小结1.寻找的方法
2.能否找全?
2.教学
(1)让学生自己尝试找
(2)有没有发什么问题?如何解决?
(3)如何表达?
(4)找出3和5的倍数
小结1.寻找的方法
2.能否找全?
(三) 巩固练习(10题)
基础练习
1.用尽快的速度找出30、36、32和48的所有因数?
2.填空。30的因数有: 36的因数有:
32的因数有 48的因数有
3. 5的倍数有: 3的倍数
提高练习
1.分别写出17的因数和倍数,再写出28
2.找因数和倍数相同吗?
拓展练习数学小知识:了解完全数。
(五)教学效果评价(小测题2—3题)
课后反思:
有的学生认为某个数的最小倍数是0倍,因此最小倍数是0。要向学生强调,小学阶段学倍数不涉及到0,因此,某个数的最小倍数应该是它的1倍。
上一篇:《鸟的天堂》说课稿精编3篇