等比数列前n项和公式教案优质10篇
等比数列前n项和公式为S_n = a(1 - r^n) / (1 - r),其中a为首项,r为公比,如何应用于实际问题?以下是网友为大家整理分享的“等比数列前n项和公式教案”相关范文,供您参考学习!
等比数列前n项和公式教案 篇1
教学过程
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。*
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练
1.某种细菌在培养过程中,每20分钟*一次(一个*为两个),经过3小时,这种细菌由1个可繁殖成()
A、511B、512C、1023D、1024
2.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()
A、B、
C、D、
二、典型例题
例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即后一期)的利息是Ap,问到第n期期末的本金和是多少?
评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期(存期+1)利率]
例2:某人从1999到2002年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到2003年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=)
例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数多?并求这一天的新患者人数.
等比数列前n项和公式教案 篇2
重点难点
教学重点:等比数列前n项和公式的推导及灵活运用,及生产实际和社会生活中有关的实际问题.
教学难点:建立等比数列模型,用等比数列知识解决有关的生产实际及社会生活中的热点问题.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(故事导入)国际象棋起源于古代印度,相传有位数学家带着画有64个方格的木盘,和32个雕刻成六种立体形状,分别涂黑白两色的木制小玩具,去见波斯国王并向国王介绍这种游戏的玩法.国王对这种新奇的游戏很快就产生了浓厚的兴趣,一天到晚兴致勃勃地要那位数学家或者大臣陪他玩.高兴之余,他便问那位数学家,作为对他忠心的奖赏,他需要得到什么赏赐呢?数学家开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的2倍,直到最后一个格子第64格放满为止,这样我就十分满足了.“好吧!”国王挥挥手,慷慨地答应了数学家的这个谦卑的请求.国王觉得,这个要求太低了,问他:“你怎么只要这么一点东西呢?”数学家笑着恳求道:“陛下还是叫管理国家粮仓的大臣算一算吧!”第二天,管理粮仓的大臣满面愁容地向国王报告了一个数字,国王大吃一惊:“我的天!我哪来这么多的麦子?”这个玩具也随着这个故事传遍全世界,这就是今日的国际象棋.假定千粒麦子的质量为40 g,那么,数学家要求的麦粒的总质量究竟是多少呢?由此传说向学生发问:怎样算出小麦的总质量呢?
思路2.(问题导入)买24枚钉子,第一枚14分钱,第二枚12分钱,第三枚1分钱,以此类推,每一枚钉子的钱是前一枚的2倍,共要多少钱?请学生想一想,多数学生认为大概没有多少钱,结果一算吓一跳,大约要4万2千元.事实上,这是等比数列的求和问题,即S=14+12+1+2+…+221=?那么怎样求等比数列的前n项和呢?在学生急于揭开谜底的强烈欲望下展开新课的探究.
推进新课
新知探究
提出问题
(1)回忆等差数列前n项和公式的推导过程,是用什么方法推导的?
(2)对任意数列{an},前n项和与通项an的关系是什么?
(3)对首项为1的等比数列{an},你能探究它的前n项和吗?
(4)对任意等比数列{an},怎样推导它的前n项和公式呢?你能联想到哪些推导思路?
(5)对于思路1中麦粒问题,国王应发给数学家多少麦粒?对于Sn=1+2+22+…+2n-1的两边为什么要乘以2而不是乘以3或4呢?
活动:教师引导学生回忆前面学过的等差数列前n项和问题,我们用倒序相加法推得了它的前n项和公式,并且得到了求等差数列通项公式的一个方法:an=a1,Sn-Sn-1, n=1,n≥2,还知道这个由数列Sn来确定an的方法适用于任何数列,且a1不一定满足由Sn-Sn-1=an求出的通项表达式.
类比联想以上方法,怎样探究等比数列的前n项和呢?我们先来探究象棋格里填麦粒的问题,也就是求S=1+2+…+263=?让学生充分观察这个式子的特点,发现每一项乘以2后都得它的后一项,点拨学生找到解决问题的关键是等式左右同乘以2,再相减得和.通过这个问题的解决,先让学生有一个感觉,就是等比数列的前n项和可化为一个比较简单的形式,关键的问题是如何简化.再让学生探究首项为1的等比数列的前n项和,即1,q,q2,…,qn-1的前n项和.观察这个数列,由于各项指数不同,显然不能倒序相加减.但可发现一个规律,就是次数是依次增加的,教师引导学生模仿等差数列写出两个求和式子,给学生以足够的时间让其观察、思考、合作交流、自主探究.
经过教师的点拨,学生的充分活动,学生会发现把两个Sn=1+q+q2+…+qn-1错一个位,两边再同乘以公比q,那么相同的指数就对齐了.这一发现是突破性的智慧发现,是石破惊天的发现.这样将Sn=1+q+q2+…+qn-1与qSn=q+q2+q3+…+qn两式相减就有(1-q)Sn=1-qn,以下只需讨论q的取值就可得到Sn了.
在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法”.在解决等比数列的一般情形时,我们还可以使用“错位相减法”.
如果记Sn=a1+a2+a3+…+an,
那么qSn=a1q+a2q+a3q+…+anq,
要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-anq.
这里要提醒 学生注意q的取值.
如果q≠1,则有Sn=a1-anq1-q.
上述过程我们略加变化一下,还可以得到如下的过程:
如果记Sn=a1+a1q+a1q2+…+a1qn-1,
那么qSn=a1q+a1q2+…+a1qn-1+a1qn,
要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-a1qn.
如果q≠1,则有Sn=a11-qn1-q.
上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.
形式上,前一个出现的是等比数列的五个基本量:a1,q,an,Sn,n中a1,q,an,Sn四个;后者出现的是a1,q,Sn,n四个,这将为我们今后运用公式求等比数列的前n项的和提供了选择的余地.
值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式.
对于等比数列的一般情形,如果q=1会是什么样呢?学生很快会看出,若q=1,则原数列是常数列,它的前n项和等于它的任一项的n倍,即Sn=na1.由此我们得到等比数列{an}的前n项和的公式:
Sn=na1,q=1,a11-qn1-q,q≠1或Sn=na1,q=1,a1-anq1-q,q≠1.
教师进一步启发学生根据等比数列的特征和我们所学知识,还能探究其他的方法吗?经过学生合作探究,联想初中比例的性质等,我们会有以下推导方法:
思路一:根据等比数列的定义,我们有a2a1=a3a2=a4a3=…=anan-1=q,
再由合比定理,则得a2+a3+a4+…+ana1+a2+a3+…+an-1=q,
即Sn-a1Sn-an=q,
从而就有(1-q)Sn=a1-anq.
当q=1时,Sn=na1,当q≠1时,Sn=a1-anq1-q.
思路二:由Sn=a1+a2+a3+…+an,得
Sn=a1+a1q+a2q+…+an-1q=a1+q(a1+a2+…+an-1)=a1+q(Sn-an),
从而得(1-q)Sn=a1-anq.
等比数列前n项和公式教案 篇3
课题:等比数列的前n项和
一 教学目标:
1.知识与技能目标:
1)掌握等比数列求和公式,并能用之解决简单的问题。
2)通过对公式的推导,对学生渗透方程思想、分类讨论思想以及等价转化思想。 2过程与方法目标:
通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。 3.情感与态度目标:
通过公式的推导与简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。 二 教学重点:
等比数列项前n和公式的推导与简单应用。 三 教学难点:
等比数列n项和公式的推导。
四 教学方法:启发引导,探索发现。 五 教学过程:
1.创设情境,导入新课:
1)复习旧知,铺垫新知: 等比数列定义及通项公式; 等比数列的项之间有何特点?
说明:如此设计目的是在于引导学生发现等比数列各项特点:从第二项起每一项比前一项多乘以q,从而为“错位相减法”求等比数列前n和埋下伏笔。
2)问题情境,引出课题:
从前,一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多一万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠。穷人听后觉得挺划算,但怕上当受骗,所以很为难。请在座的同学思考一下,帮穷人出个主意.
注:师生合作分别给出两个和式: S 1 3 30 ① 230
T30122223228229②
①学生会求,对②学生知道是等比数列项前n和的问题但却感到不会解! 问1:能不能用等差数列求和方法去求? 问2:怎么办? 2.师生互动,新课探究:
问题1 如何求和: T12222322822930 注:如果学生想不出来,师做必要启发:
1)等式右边各项有什么特点? 2)公比是多少?
即:从第二项起每一项比前一项多乘以2.
3)因此,如果两边
232829从而有: T301222222T302222324229230
师:如何求T30?
注:①学生解出T30,并与S30比较。这种求和的方法叫错位相减法。
②此处先不忙介绍“错位相减法”的要点,只让学生有个大致印象,后面还有应用,体现从特殊到一般、学生自主探究教材的新教材理念。 问题 2 如何求等比数列{an}的前n项和Sn:
Sna1a1qa1q2a1qn1
注:①学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究,并请学生上台板演。
②将Sna1a1qa1q2a1qn1两边同时乘以公比q后会得到
qSna1qa1q2a1q3a1qn,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前n项和的关键所在,让学生先思考,再讨论,最后师用多媒体予以突出强调,加深印象!
③两等式作差得到(1q)Sna1(1qn)时,肯定会有学生直接得到
a1(1qn),师不忙揭露错误,等一会用练习反馈这个易错知识点,从而掌握公Sn1q式的本质!
练习1. 用等比数列求和公式求和:
公式的 2391)S33339 应 用
2)S100555(10个05相加)
注:此组练习目的: ① 熟悉等比数列求和公式的直接应用。 ② 公比q1时,公式还能用吗
na1(q1)从而得到:等比数列{an}前n项和Sn公式应为:Sna1(1qn).
(q1)1q③ 通过纠错的方式给出公式比平铺直叙方式得出公式的效果要好得多,学生通过:自己推导出公式──公式应用──得出矛盾──完整公式的过程,很好地解决了本节课重、难点。 练习2.求和: 11(120)1111) 212191 2221 22)等比数列{an}中,a16,q2,an192,求{an}前n项和Sn.
注:①练习1)中数列的项数的确定是很容易失误的地方,学生误解为是19项。从而强调求和公式Sn中的“n”指的是项数.另外,还要指出等比数列求和公式中的公比q的指数是“n”,而等比数列通项公式ana1qn1的公比q的指数是“n1”. ②练习2)的目的在于引出等比数列求和的第二个公式形式:
na1(q1)Sna1(1qn)a1anq,根据所给条件选择哪个求和公式进行求解。很多学
(q1)1q1q生会根据条件先求出n,再带到求和公式中去求Sn,而直接用Sn的另一个公式去求,可使计算过程简化,从而自然引出这个知识点.
③ 求和公式中共有五个量:Sn,a1,q,n,an,可用方程思想:知三求二.
31中,a3,S34,求a1. 典例分析 已知等比数列an22
解:当q1时候,a1a2a3,此时正好有
1 S3a1a2a34,适合题意。2
23a1q 2当q1时,依题意有解之, 3a1(1q)41,
21q
3,利用等比数列求和公式求和时一定要对公 注:在不知道公比是否为1的情况下
得a16,综上得a1或a1
比要进行分类讨论,这是学生容易忽视的问题.
30 1 2 2 2 2 3 228229 公式再证 对于问题:T 强化理解 还可以这样考虑:
28T3012222322822912(122)
12(T30229)
T302301
问:从这种证法中,大家受何启发?
你能用这种方法证明等比数列的前n项和公式吗?
注:此处给时间给学生思考、证明.
2n2n1Saaqaqaqaqn11111 2n2n1aq(aaqaqaq)aq(Saq)111111n1 (1q)Sna1a1qn a1(1qn)q1 1q Sn naq1 1六 课堂小结 特殊数列求和 一般情况下等比数列求和 公式 292n1Sna1a1qa1qa1q 应用 T30122 方程思想: 错位相减法 知三求二 注:通过教师的提问和幻灯片的顺序播放,进一步巩固本节课的内容,并把整节课的内容形成一个整体。 七 作业
第30页 第8题偶数题,第10题; 课后探索:等比数列前n项和Sn的其它证明方法。
八 板书设计 课题 等比数列前n项和公式 及公式应用
等比数列前n项和公式教案 篇4
一、教材分析
1、从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
2、从学生认知角度来看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3、学情分析
教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
4、重点、难点
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法和公式的灵活运用。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
二、目标分析
1、知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2、过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3、情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。
三、教学方法与教学手段
本节课属于新授课型,主要利用计算机辅助教学,采用启发探究,合作学习,自主学习等的教学模式。
四、教学过程分析
学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。
1、创设情境,提出问题
一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠。穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?
启发引导学生数学地观察问题,构建数学模型。
学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:
穷人30天借到的钱:(万元)
穷人需要还的钱:?
2、学生探究,解决情境
(2)教师紧接着把如何求?的’问题让学生探究,
①若用公比2乘以上面等式的两边,得到
②
若②式减去①式,可以消去相同的项,得到:
(分) ≈1073(万元) > 465(万元)
由此得出穷人不能向富人借钱
【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力。
解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就可以消去了,得到: ≈1073(万元) > 465(万元) 。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数 学的信心,同时也为推导一般等比数列前n项和提供了方法。
3、类比联想,解决问题
这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。
一般等比数列前n项和:
即
方法:错位相减法
这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?
在学生推导完成之后,我再问:由得
【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
4、小组合作,交流展示
探究1、求和
探究2、求等比数列的第5项到第10项的和。
方法1: 观察、发现:。
方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。
探究3:求的前n项和。
【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识。解题时,以学生分析为主,教师适时给予点拨。
5、总结归纳,加深理解
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
1、等比数列的前n项和公式
2、数学思想: (1)分类讨论 (2)方程思想
3、数学方法: 错位相减法
【设计意图】以此培养学生的口头表达能力,归纳概括能力。
6、当堂检测
(1)口答:
在公比为q的等比数列中
若,则________,若,则________
若=3,=81,求q及 ,
若 ,求及q。
(2)判断是非:
① ( )
② ( )
③若③且,则
( )
【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。
7、课后作业,分层练习
必做: P30习题 1—3 A组 第1题,
选作题1:求的前n项和
(2)思考题:能否用其他方法推导等比数列前n项和公式
【设计意图】布置弹性作业以使各个层次的学生都有所发展。 让学有余力的学生有思考的空间,便于学生开展自主学习。
五、评价分析
本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。
六、教学设计说明
1、情境设置生活化。
本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。
2、问题探究活动化。
教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦。通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。
3、辨析质疑结构化。
在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习。通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。
4、巩固提高梯度化。
例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。
5、思路拓广数学化。
从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学。
6、作业布置弹性化。
通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养。
七.教学反思
学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了思维能力。
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
亮点之处:
学生成为课堂的主体,教师要甘当学生的绿叶
由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例3中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。
等比数列前n项和公式教案 篇5
一、教学目标
1. 知识与技能:掌握等比数列的前n项和公式,并用公式解决实际问题.
2. 过程与方法:由研究等比数列的结构特点推导出等比数列的前n项和公式.
3. 情态与价值:从“错位相减法”这种算法中,体会“消除差别”,培养化简的能力.
二、教学重、难点
重点:使学生掌握等比数列的前n项和公式,用等比数列的前n项和公式解决实际问题.
难点:由研究等比数列的结构特点推导出等比数列的前n项和公式.
三、学法与教学用具
学法:由等比数列的结构特点推导出前n项和公式,从而利用公式解决实际问题.
教学用具:投影仪.
四、教学设想
【创设情境】
教材开头的问题可以转化成求首项为1,公比为2的等比数列的前64项的和.类似于等差数列,我们有必要探讨等比数列的前n项和公式.
一般地,对于等比数列
它的前n项和是
由等比数列的通项公式,上式可以写成
①
①式两边同乘以公比q 得
②
①,②的右边有很多相同的项,用①的两边分别减去②的两边,得
当时,
又所以上式也可写成
.
推导出等比数列的前n项和公式,本节开头的问题就可以解决了.
【拓展探究】
①当q=1时,等比数列的前n项和公式为.
②公式可变形为(思考q>1和q<1时分别使用哪个方便).
③如果已知五个量中的任意三个就可以求出其余两个.
【例题讲评】
例1. 求下列等比数列前8项的和:
⑴,,,…;
⑵,.
解析:第⑵题已知,,还缺少一个已知条件,由题意显然可以通过解方程求得公比q,题设中要求,一方面是为了简化计算,另一方面是想提醒学生q既可以为正数,又可以为负数.
例2. 某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?
解析:先根据等比数列的前n项和公式列方程,再用对数的知识解方程.
五、课堂小结
⑴等比数列的前n项和公式中要求q≠1;这个公式可以变形成几个等价的式子.
⑵如果已知五个量中的任意三个就可以求出其余两个.
六、课后作业
七、课后反思
等比数列前n项和公式教案 篇6
讲授新课
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
1、等比数列的前n项和公式:
当时, ① 或 ②
当q=1时,当已知, q, n 时用公式①;当已知, q, 时,用公式②.
公式的推导方法一:
一般地,设等比数列它的前n项和是
由得
∴当时, ① 或 ②
当q=1时, 公式的推导方法二:
有等比数列的定义,根据等比的性质,有即 (结论同上)
围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式.
公式的推导方法三:
= ==(结论同上)
课题: §等比数列的前n项和
●教学过程
Ⅰ.课题导入
首先回忆一下前一节课所学主要内容:
等比数列的前n项和公式:
当时, ① 或 ②
当q=1时,当已知, q, n 时用公式①;当已知, q, 时,用公式②
课 题:数列复习小结
教学过程:
一、本章知识结构
二、知识纲要
(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.
(2)等差、等比数列的定义.
(3)等差、等比数列的通项公式.
(4)等差中项、等比中项.
(5)等差、等比数列的前n项和公式及其推导方法.
三、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a、、n、d(q)、 “知三求二”,体现了方程(组)的思想、整体思想,
有时用到换元法.
3.求等比数列的前n项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.
4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.
四、知识精要:
1、数列
[数列的通项公式] [数列的前n项和] 2、等差数列
[等差数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
[等差数列的判定方法]
1.定义法:对于数列,若(常数),则数列是等差数列。
2.等差中项:对于数列,若,则数列是等差数列。
[等差数列的通项公式]
如果等差数列的首项是,公差是,则等差数列的通项为。
[说明]该公式整理后是关于n的一次函数。
[等差数列的前n项和] 1. 2. [说明]对于公式2整理后是关于n的没有常数项的二次函数。
[等差中项]
如果,,成等差数列,那么叫做与的等差中项。即:或[说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。
[等差数列的性质]
1.等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有2.对于等差数列,若,则。
3.若数列是等差数列,是其前n项的和,,那么,,成等差数列。
3、等比数列
[等比数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示()。
[等比中项]
如果在与之间插入一个数,使,,成等比数列,那么叫做与的等比中项。即。
[等比数列的判定方法]
1.定义法:对于数列,若,则数列是等比数列。
2.等比中项:对于数列,若,则数列是等比数列。
[等比数列的通项公式]
如果等比数列的首项是,公比是,则等比数列的通项为。
[等比数列的前n项和]
当时, [等比数列的性质]
1.等比数列任意两项间的关系:2.对于等比数列,若,则4.若数列是等比数列,是其前n项的和,,那么,,成等比数列。如下图所示:
4、数列前n项和
(1)重要公式:
(2)裂项求和:
等比数列前n项和公式教案 篇7
教学目标
1.掌握等比数列前项和公式,并能运用公式解决简单的问题.
(1)理解公式的推导过程,体会转化的思想;
(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
教学建议
教材分析
(1)知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.
(2)重点、难点分析
教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.
教学建议
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.
(4)编拟例题时要全面,不要忽略的情况.
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.
(6)补充可以化为等差数列、等比数列的数列求和问题.
教学设计示例
课题:等比数列前项和的公式
教学目标
(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.
教学重点,难点
教学重点是公式的推导及运用,难点是公式推导的思路.
教学用具
幻灯片,课件,电脑.
教学方法
引导发现法.
教学过程
一、新课引入:
(问题见教材第129页)提出问题:(幻灯片)
二、新课讲解:
记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.
(板书)即,①
②-①得即.
由此对于一般的等比数列,其前项和,如何化简?
(板书)等比数列前项和公式
仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即
(板书)③两端同乘以,得
③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)
当时,由③可得(不必导出④,但当时设想不到)
当时,由⑤得.
于是
反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.
(板书)例题:求和:.
设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.
解:,
两端同乘以,得
两式相减得
于是.
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.
公式其它应用问题注意对公比的分类讨论即可.
三、小结:
1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;
2.用错位相减法求一些数列的前项和.
等比数列前n项和公式教案 篇8
一、教材分析:
等比数列的前n项和是高中数学必修五第二章第节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。
二、教学目标
根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
1.知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2.情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的.严谨美。
三、教学重点和难点
重点:等比数列的前项和公式的推导及其简单应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
四、教法学法分析
通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,
五、教学过程
(一)创设情境,引入新知
从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?
关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?
(二)师生讨论、探究新知
总结归纳:当q=1时,Sn=na1
当q≠1时,
公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。
(三)例题讲解,形成技能
例1:等比数列{an}中,
①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn
③已知a1=2,S3=26,求q。
通过例题一,渗透知三求二的思想。
练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。
例2. 等比数列{an}中,已知a1=3,S3=9,求q,an。
练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。
通过练习得出等比数列前项和的一个性质:成等比数列。
例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。
首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。
思考:求和:1+a+a2+a3+…+an
(四)课堂小结
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
设计意图:以此培养学生的口头表达能力,归纳概括能力。
六、板书设计
略
七、课后记
本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。
等比数列前n项和公式教案 篇9
【教学目标】
1. 通过一些实例及经历借、贷款问题的计算过程,让学生体会数学的应用价值,形成对数学的兴趣;同时培养学生应用知识解决实际问题的能力。
2. 通过探索数列的前n项和公式,培养学生创新思维能力,同时增强学生对公式理解.
【教学重点】等比数列的前项和的公式.
【教学难点】等比数列前项和公式的推导.
【教学备品】教学课件
【课时安排】3课时.(135分钟)
【教学过程】:设置悬念——讲授新知识——解决悬念——归纳小结——巩固新知识
【设置悬念】
1. 设一个投资陷阱,让同学们猜一猜,这个借款方式合不合算?
2.再讲本校一个毕业生创业的奋斗历程,然后提出他要贷款10万元,贷款5年,年息5%,采取等额本息还款方式,每个月他要还多少钱?
3. 富兰克林一生为科学和民主而工作,他死后留下的财产并不可观,大致只有一千英磅。令人惊讶的是,他竟留下了一份分配几百万英磅财产的遗嘱!这份有趣的遗嘱是这样写的:“……一千英磅赠给波士顿的居民,如果他们接受了这一千英磅,那么这笔钱应该托付给由选举出来的公民组成的基金会,基金会得把这笔钱按每年5%的利率借给一些年轻的手工业者去生息。这笔钱过了100年增加到131000英磅。我希望,那时候用100000英磅来建立一所公共建筑物, 剩下的31000英磅拿去继续生息100年,在第二个100年末了,这笔款增加到4061000英磅,其中1061000英磅还是由波士顿的基金会支配,而其余的3000000英磅让马萨诸州组成同样的基金会来管理。过此之后,我可不敢自作主张了!”富兰克林卒于1790年,现在200多年过去了,人们不禁要问:作为科学家和政治家的富兰克林,留下区区的1000英磅,竟立下百万富翁般的遗嘱,这不是开玩笑吧?
【讲授新知识】
6. 等比数列前n项和公式
一、公式推导
下面来研究求等比数列前n项和的方法.
等比数列的前n项和为 (1)
由于故将(1)式的两边同时乘以q,得
(2)
用(1)式的两边分别减去(2)式的两边,得
(3)
当时,由(3)式得等到数列的前项和公式
()
知道了等比数列中的、n和,利用公式()可以直接计算.
由于
因此公式()还可以写成
()
当时,等比数列的各项都相等,此时它的前项和为
. ()
【想一想】在等比数列中,知道了、q、n、、五个量中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?
【注意】 在求等比数列的前n项和时,一定要判断公比q是否为1.
二、巩固知识
1.例5 写出等比数列…的前n项和公式并求出数列的前8项的和.
解 因为,所以等比数列的前n项和公式为
,
故 .
2.例6 一个等比数列的首项为,末项为,各项的和为,求数列的公比并判断数列是由几项组成.
解 设该数列由n项组成,其公比为q,则,,.
于是
即 ,
解得 .
所以数列的通项公式为 于是 ,
即 解得 .
故数列的公比为,该数列共有5项.
3.解决悬念 现在回过来看一看,前面提到的第一个问题“这个借款方式合不合算”
1.对方每天给你100万元,30天就是3000万元。
2.你30天总还款数是多少?第一天是1元,第二天是2元,第三天是4元…,每天要还的钱是前一天的一倍,这是一个等比数列,
解得 1073741823>30000000,所以这个借款方式非常不合算,是个大陷阱。
三、运用知识,强化练习
练习
1.求等比数列,,,,…的前10项的和.
2.已知等比数列{}的公比为2,=1,求.
3.已知等比数列的公比为,,求.
四、巩固知识 典型例题
【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.
1.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行货款20万元,贷款期限为5年,年利率为%.
(1)如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到万元);
(2)如果每年一期,分5期等额还款(每期以相等的额度平均偿还本息),那么小王每年偿还银行多少钱.
解 (1)货款第一年后的本利和为
第二年后的本利和为
依次下去,从第一年后起,每年后的本利和组成的数列为等比数列
…
其通项公式为 故5年后一次性还款小王应还款数为
(万元).
(2)小王每次应偿还银行a万元,
,(A为贷款本金,为还款期数,为期利率.)
(万元)
可以看到,本例中一次性付款数为万元,而采用分5期付款的方式总共付款数为×5=(万元),分期付款比到期一次性付款节省了近2万9千元。
(说明:等额本息还款公式不需要学生掌握推导,学会使用即可)
2.解决悬念
(1)该毕业生他每个月他要还多少钱?
A=10,n=5×12=60,i=5%÷12≈
≈(元)
每个月他要还元
(2)富兰克林立下百万富翁般的遗嘱,是不是开玩笑?
A、一千英磅每年5%的利率100年增加到多少钱
(英磅)
B.剩下的31000英磅拿去继续生息100年,在第二个100年末了,这笔款增加到多少英磅?
(英磅)
所以富兰克林立下百万富翁般的遗嘱,不是开玩笑。
【归纳小结】
1.思考并回答下面的问题:等比数列的前n项和公式是什么?
结论:(1)(2)2.本次课学了哪些内容?重点和难点各是什么?
【巩固新知识】
完成《学习与练习》P17,训练题,A组
等比数列前n项和公式教案 篇10
等比数列是指一个数列中,从第二项开始,每一项与它前面的项的比值都相等的数列。 设等比数列的首项为a1,公比为r,第n项为an,则等比数列可以表示为:a1,a1 * r,a1 * r^2,…,a1 * r^(n-1)。
求等比数列前n项和的公式为:Sn = a1 * (1 – r^n) / (1 – r)。
教案:
一、教学目标:
通过本课,学生应掌握等比数列前n项和的求法。
二、教学重难点:
等比数列前n项和的公式的推导和运用。
三、教学内容:
1. 回顾等比数列的概念和公差的定义。
2. 讲解等比数列前n项和的公式的推导过程。
3. 通过例题和练习,巩固学生对等比数列前n项和的计算方法的理解和掌握。
四、教学步骤:
1. 导入:复习等比数列的概念和公差的定义。
2. 讲解:介绍等比数列前n项和的公式的推导过程,引导学生理解公式的含义和计算方法。
3. 示例:通过一个具体的例子,演示等比数列前n项和的计算步骤。
4. 练习:提供一些练习题,让学生运用等比数列前n项和的公式进行计算。
5. 总结:归纳等比数列前n项和的公式和计算方法。
6. 拓展:引导学生思考等比数列前n项和的应用场景,如财务计算、增长预测等。
五、板书设计:
等比数列前n项和的公式:Sn = a1 * (1 – r^n) / (1 – r)
六、教学反思:
通过本课的教学,学生能够掌握等比数列前n项和的计算方法。通过示例和练习,学生能够灵活运用公式解题。在教学中,可以结合实际生活中的问题,引导学生思考并应用等比数列前n项和的概念和公式,提高学生的问题解决能力。
下一篇:返回列表