三角形内角和教案【精选4篇】

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“三角形内角和教案【精选4篇】”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

角形内角和教案【第一篇】

设计理念

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

学情分析

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

学习目标

1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点

探索和发现“三角形的内角和是180°”。

教学难点

运用三角形的内角和解决实际问题。

教学准备

教师:多媒体、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的三角形。

教学过程

一、创设情景,引出问题

1.猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,出示谜底。

师:真是三角形,同学们的反应真快!

2.复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

3.引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1.讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:①用量的方法;②用拼的方法;③用折的方法。

2.操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3.学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的`测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a.学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b.请大家四人小组合作,用他的方法验证其它三角形。

c.展示学生作品。

d.师展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1.出示:我是小判官(对的打“√”错的“×”。)

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2.接下来我要奖励你们一个游戏:《帮角找朋友》

3.求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

五、课堂总结。

师:这节课你有什么收获?

学生自由发言。

师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

六、作业布置

完成教材练习十六的第1、3题。

七、板书设计:

( 任意)三角形的内角和是180°

∠1+∠2+∠3=180°

度量 剪拼 折拼

《三角形内角和》教学设计【第二篇】

教学目标:

1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

教学重点:

知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

教学难点:

经历操作活动,推理、归纳出三角形的内角和。

教学资源:

多煤体课件,各种三角形,三角板,量角器,剪刀。

教学活动:

一、创设情境,导入新课。

1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?

2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

3.三角形中还隐藏着那些知识?三角形的三个内角的`和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

二、合件交流,操作发现。

1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

2.组织学生小组合作:

请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

3.组织学生汇报交流:

①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将《一米范文·》任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

三、实践应用,拓展延伸。

1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

四、反思总结,自我建构。

这节课你有什么收获?

这节课我们就研究到这儿,同学们再见!

角形内角和教学设计【第三篇】

课题

三角形的内角和

手记

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点

重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程

资源

体验目标

“学”与“教”

创设问题情境

课件出示:两个三角板

遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?

生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建

模型

每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

课件

学生自己剪的一个任意三角形

大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

学生动手操作验证

师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?

学生汇报:

生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?

生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

师:有没有人质疑,用什么方法验证?

生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的。方法证明三角形的内角和是180°。

解释

运用拓展

课件

正方形纸

让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1.∠1=40°,∠2=48°,求∠3有多少度?

2.算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?

⑵∠1=28°,∠2=62°,∠3=?

⑶∠1=80°,∠2=56°,∠3=?

师:你是怎样算的?这三个三角形各是什么三角形?

提问:在一个三角形中最多有几个钝角?

在一个三角形中最多有几个直角?

3.游戏:将准备的正方形纸对折成一个三角形?

师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

说明:三角形大小变了,内角和不变。

4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

说明:三角形形状变了,内角和不变。

5.根据所学知识,你能想办法求出下面图形的内角和吗?

板书

设计

三角形内角和

①号 钝角三角形 内角和180°

②号 锐角三角形 内角和180°

三角形内角和是180°

③号 直角三角形 内角和180°

④号 直角三角形 内角和180°

⑤号 钝角三角形 内角和180°

⑥号 锐角三角形 内角和180°

学具教具准备

课件三角形纸片量角器正方形纸

角形内角和教学设计【第四篇】

一、教材分析

(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。 “三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

(二)教学目标

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

3、解决问题:会用三角形内角和解决一些实际问题。

4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

(三)重难点的确立:

1、重点:“三角形的内角和等于180°”结论的探究与应用。

2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

二、学情分析

处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的`开放性与可扩展性。

基于以上的情况,我确立了本节课的教法和学法:

三、教法、学法

(一)教法

基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。

(二)学法

通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、教学过程

我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

活动6的设计目的发挥学生主体意识,培养学生语言概括能力。

教学设计说明

1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、

2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、

3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

221381