六年级北师大版数学教案【推荐8篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“六年级北师大版数学教案【推荐8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
六年级北师大版数学教案【第一篇】
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究。
(一)教学例1。
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3.小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2。
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
三、课堂小结。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习。
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。
六、板书设计。
成反比例的量xy=k(一定)。
每小时加工数×加工时间=零件总数(一定)。
每本页数×装订本数=纸的总页数(一定)。
六年级北师大版数学教案【第二篇】
包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。
学情分析。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。
2、学生已有的生活经验。
学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。
教法学法。
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
教学目标。
知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点难点。
重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
难点是:理解最节省包装纸的包装策略。
教具准备:多媒体课件,师生共同准备若干个长方体纸盒。
教学过程。
一、课前交流。
师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。
师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。
师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!
二、激发兴趣,导入课题。
上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。
物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。
再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。
师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。
师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。
设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。
下了知识基础和情感基础。。
三、动手操作,初步感知。
1、小组活动,自主探究。
师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。
师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。
问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。
师:重合的面在包装时需要用包装纸包装吗?(不需要)。
师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。
请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。
问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。
2、展开猜想,交流讨论。
师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。
师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。
师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。
问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。
3、验证猜想,得出结论。
师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。
问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。
先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。
师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。
师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。
四、组合三个,再次体验。
六年级北师大版数学教案【第三篇】
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点。
1.结合丰富的事例,认识正比例。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点。
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具。
课件。
教学过程。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一。
1.观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的.周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二。
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.请把下表填写完整。
3.从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三。
1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2.把表填写完整。
3.从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4.说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5.正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6.观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想。
1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2.小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011。
爸爸的年龄/岁3233。
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
在老师的小结中感受并总结正比例关系的特征。
活动二:练一练。
1.判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)。
3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由。
应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。
4.找一找生活中成正比例的例子。
5.先自己独立完成,然后集体订正,说理由。
六年级北师大版数学教案【第四篇】
本班共有学生56人,其中男生35人,女生21人,学生的听课习惯已初步养成,并班上同学思想比较要求上进,有部分学生学习态度端正学习能力强,学习有方法,学习兴趣浓厚;另一部分学生表现为学习目的不明确,学习态度不端正,作业经常拖拉甚至不做。从去年的学习表现看,学生的计算的方法与质量有待进一步训练与提高。故在新学期里,我们在此方面要多下苦功,面向全体学生,全面提高学生的素质,全面提高教育教学质量,为培养更多的四化建设的新型人才而奋斗。
六年级北师大版数学教案【第五篇】
教学目标:
2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学方法:
创设情境——新知讲授——巩固总结——练习提高。
教学用具:
多媒体课件、三角形学具。
教学过程:
一、创设情境。
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?
生:三角形的。
师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积。
二、新知探究。
1、课件出示一个平行四边形。
师:平行四边形的面积怎么计算?
生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)。
师:平行四边形的面积公式是怎样得到的?
生说推导过程。
生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验。
师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。
生小组合作,教师巡视指导。
3、展示成果,推导公式。
六年级北师大版数学教案【第六篇】
教学目标:
1、使学生理解和掌握乘法交换律和结合律。
2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。
3、培养学生运用新知识解决实际问题的能力。
教学重难点:
1、使学生理解并运用乘法交换律和结合律。
2、乘法交换律和结合率的运用。
教具准备:
口算卡片。
教学过程:
一、导入。
1、出示口算卡片。
50__70=125__8=40__5=11+7=4+25=。
70__50=8__125=5__40=7+11=25+4=。
2、复习乘法算式的各部分名称:
板书:5__4=20。
因数因数积。
二、教学实施。
1、领会主题图。
(1)、观察图意。
(2)、说说你从图中你了解到了那些信息。
(3)、根据图中带给我们的信息,可解决那些问题?
2、出示例1:负责挖坑、种树的一共有多少人?
(1)、分析数量关系。
(2)、列式计算:4__25=100(人)或25__4=100(人)。
(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4__25=25__4)。
(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)。
(5)、举例。
(6)、归纳总结:
交换两个因数的位置,积不变,叫乘法交换律。
(7)、用字母表示乘法交换律。
a__b=b__a。
说一说a、b可以是那些数?(a、b可以是任何两个不同的数)。
(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。
师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。
2、出示例2:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?
(1)、读题,分析数量关系。
(2)、请同学用不同的方法解答。板书解题思路。
方法一:(25__5)__2方法二:25__(5__2)。
=125__2=25__10。
=250(桶)=250(桶)。
(3)、小组讨论两种解法的相同点和不同点。
(4)、这两个算式之间可以用什么符号连接?
板书:(25__5)__2=25__(5__2)。
(5)、观察下面三组算式,说说你发现了什么?
(15__6)__10()15__(6__10)。
(125__80)__3()125__(80__3)。
(12__25)__4()12__(25__4)。
(6)、归纳总结:
三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。
(7)、用字母表示乘法结合律:(a__b)__c=a__(b__c)。
这里a、b、c表示的是大于或等于0的整数。
3、比较、概括、归纳。
比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。
4、巩固提高。
(1)、填一填:
75__26=()__()8__2=2()。
a__b=()__()a__()=15__()。
125__7__8=()__()__7(40__15)__[]=40__([]__6)。
25__(4__[])__([]__4)__132__4__6__5=(4__6)__([]__[])。
(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?
6、课堂小结:
通过本节课的学习,你都有哪些收获?
文档为doc格式。
六年级北师大版数学教案【第七篇】
1.进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2.能解决“比一个数增加百分之几的数”或“比一个。
数减少百分之几的数”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。教学重点理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
六年级北师大版数学教案【第八篇】
1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。
2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。
3、结合欣赏和设计美丽的图案,感受图形世界的神奇。
1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。
2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。
一、情境导入利用课件显示美丽的图案,配音乐,让学生欣赏。
二、学习新课。
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这些美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。(你看到的这些生活中的美丽图案,你想说什么?)。
三、观察、分析图案:
1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?(教材中呈现的花瓣是曲线图形,学生在画这个图时会感到困难,可以让学生看着图进行分析,也可以剪好一个基本图形,让学生在操作中体会图案设计的基本过程。)。
2、小组内进行交流。
3、小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)。
4、你还有其他方法吗?
5、教师小结:
其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。
四、设计图案。
1、鼓励学生观察分析图形的变换,进一步认识平移,旋转和轴对称。让学生说说自己的方法,把自己的思考过程表达出来。
2、小组合作设计图案。(组长汇报交流的结果。)。
3、作品展示:
(1)作品展示:把学生设计的图案分小组张贴在教室的前面,学生参观作品。
(2)学生评价:每个小组学生上台对自己小组的作品进行评价,比一比看谁评价得好。
4、全班交流,学生欣赏并评价。(学生点评)。