八年级数学上册教案(精选4篇)

网友 分享 时间:

【导言】此例“八年级数学上册教案(精选4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

人教版八年级数学上册教案【第一篇】

教学目标

1.认识变量、常量.

2.学会用含一个变量的代数式表示另一个变量.

教学重点

1.认识变量、常量.

2.用式子表示变量间关系.

教学难点

用含有一个变量的式子表示另一个变量.

教学过程

Ⅰ.提出问题,创设情境

情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.

1.请同学们根据题意填写下表:

t/时 1 2 3 4 5

s/千米

2.在以上这个过程中,变化的量是________.变变化的量是__________.

3.试用含t的式子表示s.

Ⅱ.导入新课

首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.

从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.

这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的。数值是始终不变的,如上例中的速度60千米/小时.

[活动一]

1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?

2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?

引导学生通过合理、正确的思维方法探索出变化规律.

结论:

1.早场电影票房收入:150×10=1500(元)

日场电影票房收入:205×10=20xx(元)

晚场电影票房收入:310×10=3100(元)

关系式:y=10x

2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)

挂2kg重物时弹簧长度:2×0.5+10=11(cm)

挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)

关系式:L=0.5m+10

通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.

[活动二]

1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?

2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?

结论:

1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2r=

面积为10cm2的圆半径r= ≈1.78(cm)

面积为20cm2的圆半径r= ≈2.52(cm)

关系式:r=

2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.

若长为1cm,则宽为5-1=4(cm)

据矩形面积公式:S=1×4=4(cm2)

若长为2cm,则宽为5-2=3(cm)

面积S=2×(5-2)=6(cm2)

… …

若长为xcm,则宽为5-x(cm)

面积S=x?(5-x)=5x-x2(cm2)

从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.

Ⅲ.随堂练习

1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.

2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.

解:1.买1支铅笔价值1×0.2=0.2(元)

买2支铅笔价值2×0.2=0.4(元)

……

买x支铅笔价值x×0.2=0.2x(元)

所以y=0.2x

其中单价0.2元/支是常量,总价y元与支数x是变量.

2.根据三角形面积公式可知:

当高h为1cm时,面积S= ×5×1=2.5cm2

当高h为2cm时,面积S= ×5×2=5cm2

… …

当高为hcm,面积S= ×5×h=2.5hcm2

人教版八年级数学上册教案【第二篇】

一、创设情景,明确目标

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

多边形的定义及有关概念

活动一:阅读教材P19。

展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分

多边形的对角线

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分

正多边形的有关概念

活动二:阅读教材P20。

展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标

1、下列叙述正确的`是(D)

A、每条边都相等的多边形是正多边形

B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

C、每个角都相等的多边形叫正多边形

D、每条边、每个角都相等的多边形叫正多边形

2、小学学过的下列图形中不可能是正多边形的是(D)

A、三角形B。正方形C。四边形D。梯形

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

人教版八年级数学上册教案【第三篇】

一、创设情景,明确目标

多媒体展示:内角三兄弟之争

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

三角形的内角和

活动一:见教材P11“探究”。

展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理。

小组讨论:有没有不同的证明方法?

反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程。三角形三个内角的和等于180°.

针对训练:见《学生用书》相应部分

三角形内角和定理的应用

活动二:见教材P12例1

展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

小组讨论:三角形的内角和在解题时,如何灵活应用?

反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的'度数时,可根据它们之间的关系列方程解决。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

1.本节学习的数学知识是:三角形的内角和是180°.

2.三角形内角和定理的证明思路是什么?

3.数学思想是转化、数形结合。

《三角形综合应用》精讲精练

1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

个 个 个 个

2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

3.下列五种说法:①三角形的三个内角中至少有两个锐角;

②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余。其中正确的说法有________(填序号).

《与三角形有关的角》同步测试

4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状。为什么?

(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

八年级数学上册教案【第四篇】

教材分析

重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。

学情分析

学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。

教学目标

1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的`过程,体会集合图的`优点,能用集合图分析生活中简单的有重复部分的问题。

2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。

教学重难点

重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。

难点:借助直观图解决集合问题。

教学准备

课件。

教学流程

情境导入

1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?

2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?

师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)

探究新知

1.巧妙设疑,直观感悟,初步感知重复现象。

(1)调查本班学生参加数学小组、作文小组的情况。

(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。

问题:当有同学既参加数学小组,又参加作文小组时怎么站?

引出问题,学生想办法解决。

(3)说说呼啦圈里各部分学生所表示的意思。

2.自主绘图,加深理解。

3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。

师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!

4.读图训练。教师引导学生用准确的语言表述图中的各种信息。

5.观察图表,算法探究。

师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?

学生回答列式。

6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。

巩固应用

教材第106页练习二十三第1、2、3题。

课堂小结

通过今天的学习,你有什么收获?

20 315028
");