七年级上册数学教案【通用4篇】

网友 分享 时间:

【导言】此例“七年级上册数学教案【通用4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

七年级数学上册教案【第一篇】

教学内容:

第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。

教学目标:

1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。

2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。

教学重点:

会用正、负数表示相反意义的量。

教学难点:

会用正、负数解决生活中的实际问题。

教具准备:

多媒体课件

教学方法:

合作交流、师生互动

教学过程:

一、游戏激趣

教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?

向上看 向前走200米 电梯上升15层 我在银行存入了500元

二、复习旧知

我们已经学习了负数,你能举几个负数的例子吗?

通过前面内容的学习,你还知道哪些知识?

三、学习新知

1.教学例3。

出示例3的情境:小明向东走200米,小军向西走200米。

教师问:你准备怎样来表示这两个不同意思的量?

学生1:向东走200米记作+200米,向西走200米就记作-200米。

学生2:向西走200米记作+200米,向东走200米就记作-200米。

教师对这两种记法都应给予肯定。

学生独立试一试

(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?

(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?

学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。

(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。

项目 父母工资 电话费 父母奖金 水、电、气费 伙食费

收支情况(元) 4500 -130 1000 -280 -1750

2.教学例4。

教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)

月份 7月 8月 9月 10月 11月 12月

盈亏情况(元) +6500 -2700 0 -750 +9500 +16700

教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)

教师:从表中你获得了哪些信息?

学生小组内交流,然后全班汇报。

教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。

3.讨论生活中的负数。

教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。

教师:存折上的-800表示什么意思?

学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元

电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)

老师现在要到33层应该按几啊?要到地下3层呢?

四、课堂练习

1.下图每段表示1m,小丽刚开始的。位置在0处。

(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )

(2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。

(3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。

(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。

(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。

2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。

3.如果-20分表示比平均分低20分,那么+15表示( )

4.如果比规定任务多做5个记作+5个,那么-5表示( )

如果在银行存入10000元记作+10000,那么-5000表示( )。

五、自学“你知道吗?”

学生阅读教科书92页内容,说说有什么收获?

六、课堂小结

通过今天的学习,你有什么收获?

七、课堂作业

练习二十二第6、7题。

家庭作业:90页课堂活动第3题,练习二十二第5、8题

板书设计:

认识具有相反意义的量及其简单应用

向东走200米记作+200米,向西走200米就记作-200米

正数、负数来表示相反意义的量。

七年级数学上册教案【第二篇】

一、教学目标

1、知识与技能

(1)初步了解立体图形和平面图形的概念、

(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体、

2、过程与方法

(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉、

(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体、

3、情感、态度、价值观

(1)、形成主动探究的意识,丰富学生数学活动的'成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣、

二、教学重点、难点:

教学重点:常见几何体的识别

教学难点:从实物中抽象几何图形、

三、教学过程

1、创设情境,导入新课、

(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里、引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?

(2)用幻灯片展示一些实物图片并引导学生观察、从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的

2、直观感知,识别图形

(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置、

(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形、观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点、

七年级数学上册教案【第三篇】

总时:1时

第1时, 备时间:开学第十五周 上时间:第十六周

一、教学目标: (一)教学知识点

1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。

2 .近似数和有效数字 并按要求取近似数。

3.从统计图中获取信息 并用统计图形象地表示数据。

(二)能力训练要求

1.体会描述较小 数据的方法 进一步发展数感。

2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。

3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。

(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值。 2.发展学生的创新能力和克服困难的勇气。

二、教学重点:1.感受较小的数据。

2.用科学记数法表示较小的数。

3.近似数和有效数字 并能按要求取近似数。

4.读懂统计图 并能形象、有效地用统计图描述数据。

教学难点:形象、有效地用统计图描述数据。

教学过程:.创设情景 引入新

三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

1.哪些数据用科学记数法表示比较方便?举例说明。

2.用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成 其中氢原子的直径约为 000 0001米。

(2)生物学家发现一种病毒的长度约为毫米;

(3)某种鲸的体重可达136 000 000千克;

(4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚。

四。时小结:我们这节回顾了以下知识:

1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。

2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。

3.又一次欣赏了形象的统计图 并从中获取有用的'信息。

(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。

(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可。

(1)形象统计图(略)只要合理即可。

(2)从表中的数据看出 河流越长 其流域面积越大。

(3)河流的年径流量与河流所处的位置有关系。

五。后作业:

七年级上册数学教案【第四篇】

教学目的

1、了解一元一次方程的概念。

2、掌握含有括号的一元一次方程的解法。

重点、难点

1、重点:解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1、解下列方程:

(1)5x—2=8(2)5+2x=4x

2、去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念。

如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。

例1、判断下列哪些是一元一次方程

x= 3x—2 x—=—1

5x2—3x+1=0 2x+y=1—3y =5

例2、解方程(1)—2(x—1)=4

(2)3(x—2)+1=x—(2x—1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x—[3(x+1)—(1+4)]=1

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,1、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1、教科书第12页习题6。

2、第1题。

20 426961
");