新人教九年级数学上册教案【优秀4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“新人教九年级数学上册教案【优秀4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

新人教九年级数学上册教案【第一篇】

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。

5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

教学重点:了解函数的意义,会求自变量的取值范围及求函数值。

教学难点:函数概念的抽象性。

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数。

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

解:1、y=30n

y是函数,n是自变量

2、 ,n是函数,a是自变量。

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

例1、求下列函数中自变量x的取值范围。

(1)   (2)

(3)   (4)

(5)   (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义。

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零。 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里 与 是并且的关系。即2与-1这两个值x都不能取。

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次元,一般车保管费是每次一辆元。

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,

收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。

对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值。

例3、求下列函数当 时的函数值:

(1)   (2)

(3)   (4)

解:1)当 时,

(2)当 时,

(3)当 时,

(4)当 时,

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有确定的值与之对应。以此加深对函数的理解。

(二)小结:

这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。

作业:习题组2、3、5

内容和内容解析【第二篇】

(一)内容

一元二次方程的概念,一元二次方程的一般形式。

(二)内容解析

一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础。

针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式。在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机。

新人教九年级数学上册教案【第三篇】

一、复习引入

学生活动:请同学们完成下列各题。

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略。

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到 m2,求每年人均住房面积增长率。

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=

(1+x)2=

直接开平方,得1+x=±

即1+x=,1+x=-

所以,方程的两根是x1==20%,x2=-

因为每年人均住房面积的增长率应为正的,因此,x2=-应舍去。

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。我们把这种思想称为“降次转化思想”。

三、巩固练习

教材第6页 练习。

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的。若p<0则方程无解。

五、作业布置

九年级数学上册教案:二次根式【第四篇】

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0)。

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征。

(2)不能。

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。

解:略。

三、巩固练习

教材第9页 练习1,2.(1)(2)。

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程。

五、作业布置

20 102996
");