平行四边形教案(精编3篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“平行四边形教案(精编3篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

平行四边形教案1

教学目标:

1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

教学重点:认识平行四边形。

教学难点:感悟平行四边形的特征。

教学过程:

一、情境导入

同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

二、自主探究

同学们在生活中见过这样的图形吗?在哪见过?

看,这是教师在生活中见到的四边形,你知道这是什么吗?

课件出示:教材第14页例2图

第一幅图是挂衣服的架子,第二幅图是围起来的`篱笆墙,第三幅图是楼梯的扶手。

你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

学生动手操作,尝试拼平行四边形,教师巡视指导。

组织交流,展示学生拼图结果,并让学生说说发现了什么?

(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)

老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

三、巩固练习

1、“想想做做”第1题。学生独立完成,分小组讨论, 汇报。

2、“想想做做”第2题。组织学生想一想,再围一围。

3、“想想做做”第3题,学生在书上描一描,教师巡视检查。

4、“想想做做”第4题,学生动手完成。

5. “想想做做”第5题,学生在家长的帮助下完成。

三、全课总结

提问:今天这节课你有什么收获?

课后反思:文 章

《平行四边形的性质》教案二

学习目标

1、平行四边形性质(对角线互相平分)

2、平行线之间的距离定义及性质

新课探究

活动一:

如图,□ABCD的两条对角线AC、BD相交于点O.

(1)图中有哪些三角形是全等的?有哪些线段是相等的?

(2)想办法验证你的猜想?

(3)平行四边形的性质:平行四边形的对角线

几何语言:∵四边形ABCD是平行四边形(已知)

∴AO==AC,BO==BD()

活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

(1)线段AC,BD有怎样的位置关系?

(2)比较线段AC,BD的长短。

(3)若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处。

知识应用

1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长。

3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

当堂反馈(小测):

1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

巩固提升

1.平行四边形的两条对角线

2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

4、下列性质中,平行四边形不一定具备的是()

A、对角互补B、邻角互补C、对角相等D、内角和是360°

5、下列说法中,不正确的是()

A、平行四边形的对角线相等B、平行四边形的对边相等

C、平行四边形的对角线互相平分D、平行四边形的对角相等

6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对进行证明。

9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

(1)多做几条这样的直线,看看它们有什么共同的特征

(2)试着用旋转的有关知识解释你的发现。

小学四年级数学上册平行四边形教案3

教学目标:

1、 使学生通过实际测量充分感知四边形内角和为360度这一规律。

2、提高学生综合运用知识解决问题的能力。。

3、通过动手测量,使学生经历充分感知四边形内角和为360度这一规律的全过程,并渗透归纳、猜想和验证的数学思想。

4、使学生感悟到数学的神奇和奥妙,增强学好数学的信心。

教学重难点:

感知四边形内角和是360度这一规律。

教具准备:

量角器。

教学过程:

一、情境引入,回顾再现

师:这节课我们继续来研究四边形。

板书课题:平行四边形和梯形。

二、分层练习,强化提高

展示一个平行四边形,请学生用量角器测量一下每个角的'度数。再把四个角的度数相加,是多少度呢?这是一个四边形,其他的四边形是什么情况呢?

小组研究,总结规律:

1. 组内分工测量75页8题中的每个四边形的各个角的度数。

2. 汇总填表75页9题。

3. 共同讨论总结规律,全班汇报交流。

出示图形,小组内可再任意画一个四边形试一试。

小结:任意一个四边形四个角的度数之和都是360度。

三、自主检测,评价完善

1.在表中适当的空格内画“∨”。

2.在图中填写合适的四边形名称。

四、归纳小结,课外延伸

这节课有什么收获?

20 1037996
");