乘法分配律教案最新4篇
【导言】此例“乘法分配律教案最新4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
乘法分配律【第一篇】
教学内容:教科书第64页例7,练习十四的第3一10题。
教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。
教学难点 :应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。
教学过程 :
一、复习
教师出示试题:
1.(35+65)×37 ×37+65×37
×(174+26) ×174+85×26
5.(80+8)×25 ×25+8×25
7. 32×(200+3) ×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例7
(1) 教师出示例题:计算9×37+9×63。
教师:这道题是要计算两上乘积的和。
“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律)。
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
三、课堂练习
做练习十四的题目。
1. 第3题,2. 让学生口算。当计算101×57和45×102时,3. 提问:“你是怎样做的?得多少?”
2、第4题,5. 先让学生自己计算。核对时让学生回答。
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
3、第7题,7. 先让学生独立做,8. 然后集体核对,9. 核对的要让学生说一说是怎样做的。当核对“26×3”时,10. 学生说出计算方法后,11. 再让学生说一说计算过程。学生发言后,12. 教师说明:26乘以3可以写作(20+6)×3,13. 根据乘法分配律等于20乘以3的积再加6乘以3的积,14. 这实际上是应用了乘法分配律。这就是说,15. 我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16. 第4、6、8、9题应用乘法分配律比较简便。
4、 第9题和第10题,18. 先让学生独立做,19. 核对时要让学生说出每个算式的意义。
5.提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作业
练习十四的第5、6、8题。
《乘法分配律》教学反思【第二篇】
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。
1、在要求同学们去总结出乘法分配律的概念时老师没有很好的`引导,导致同学对乘法分配律特点的认识比较模糊。
结合学生的掌握情况我觉得教学此内容需要注意以下几点:
1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教学反思11
乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。
在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。
在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。
通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。
所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。
乘法分配率【第三篇】
课题:《乘法分配律》教学设计 泉师附小:郑锦书
教学内容:六年制小学数学第八册第P64-66 页。(人教版)
教学目标 :1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2.渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
教学重点:充分感知并归纳乘法分配律。
教学难点 :理解乘法分配律的意义。
教具准备:多媒体课件一套。
教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,
感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,
深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分
配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、
主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主
导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。
教学过程 :
一。复习旧知,作好铺垫。
1.回顾:说说已学过的乘法交换律和结合律,并用字母表示。
2.初次感知规律:〖算一算〗
①(3 + 2)×4 3×4 + 2×4
②2×(11 + 9) 11×2 + 9×2
③20×5 + 4×5 (20 + 4)×5
1.计算①、②两组算式各等于多少?
2.比较两组算式相同点和不同点;3.可用什么符号连接?
3.观察、激趣、导入 。
第③组算式老师不用计算,就可以判定用等号连接,这是为什么呢?难道这里有什么奥秘吗?今天,我们就一同来研究这个问题。
二。联系实际,探究规律。
㈠影幕演示:
1.学校购买校服。每件 35元,每条 25元。买这样3 套校服,一共要多少元?
①学生读题,弄清题意。②上台演示,合作讨论,研究策略。
③展示思维过程,探究解题规律。
2.分析比较:仔细观察两种方法有什么不同?
3.结论: 两个算式的结果如何?用什么符号连接?仔细观察,认真思考,发现其中有什么规律?
㈡探究概括规律:
1.再一步观察、分析、比较去发现规律。〖多媒体操作引导〗
a.观察这些等式,等号左边算式有什么特点?〖多媒体演示〗
b.继续观察,等号右边的算式又是怎样计算的?先算什么?
后算什么?
c.这两个积又是怎么得到的?
结论:把两个加数分别同这个数相乘。概括起来,说一说?
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。
2.字母表示乘法分配律:
如果用a、b、c分别代表三个数,你会用字母表示乘法分配律吗?
三。质疑联想,拓展认识。
四。巩固运用规律。
㈠数学医院:判断正误。
①2×( 6 + 5 ) =2 × 6 + 5- - - - - 〖 〗
②( 25 + 7 )×4 =25 ×4 ×7×4- - - - - 〖 〗
③35×9 + 35 =35×( 9 + 1 )=350 - - - - - -〖 〗
㈡连一连:
3×17 + 5 ×17 (22 + 44)×30
(18 + 4)×6 18 ×6 + 4 ×6
22×30 + 44 ×30 60×20 + 60×30
60 ×(20 + 30) (3 + 5)×17
㈢填一填:
①(12+40)×3= ×3 + ×3
②15×(40 + 8) =15× + 15×
③78×20+22×20=( + )×20
④66×28 + 66×32 + 66×40=( + + )×
㈣做一做:①103×32 ②99×32
五。联系实际,深化认识。
咱们来解决一个实际问题试试。多媒体演示
为了丰富同学们的课余生活,学校准备购置足球和排球各20个,根据提供的信息,你能提出数学哪些问题 ?
22元 25元
六。归纳概括,完善认识。
请同学们回忆这节课的学习过程,想想,通过这节课,你有什么收获?
乘法分配律【第四篇】
教学内容:教科书第68页例5,第69页“做一做”中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,计算每一题时,第一个学生回答“先算什么”,第二个学生回答“再算什么”,第三个学生回答“接下来算什么”。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
“图中一共有多少个正方形?你是怎样想的?”先请一个学生回答。教师把学生所列的算式写在黑板上。
“还有别的算法吗?你是怎样想的?”再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
”(5+3)×4 5×4+3×4
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
“这两个算式的计算结果怎样?”
“这两个算式的计算结果相等,说明这两个算式有什么关系?”学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)×4=5×4+3×4
“等号左面的算式是什么意思?”(5与3的和乘以4。)
“等号右面的算式是什么意思?”(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)×6 18×6+7×6
“左面的算式是什么意思?”(18与7的和乘以6。)
“右面的算式是什么意思?”(18与7分别乘以6,再把两个积相加)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
“这两个算式相等。说明18与7的和乘以6等于什么?”说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20×(15+9) 20×15+20×9
“先来计算一下这两个算式各等于多少?”
“两个算式都等于多少?”
“这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
“仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?”多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
“再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
“等号左面与等号右面相等是什么意思?”学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用“a、b、c“表示三个数,可以写成下面的形式:
(a+b)×c=a×c+b×c
“等号左面(a+b)×c表示什么意思?”(表示两个数的和同一个数相乘)。
“等号右面“a×c+b×c表示什么意思?”(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)×27,提问:
1.“这个算式中是哪两个数的和乘以哪个数?”
“根据,这个算式等于哪两个乘积的和?”
教师在黑板上再写算式:185×27十15×27,提问:
“这个算式中是哪两个数分别乘以哪一个数?”
“根据,这个算式等于哪两个数的和乘以哪一个数?”
2.做第69页“做一做”中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
上一篇:牛顿第一定律教案(精编3篇)
下一篇:小学语文四年级上教案【汇集4篇】