分数的基本性质教案(优质5篇)
【阅读指引】阿拉题库网友为您分享整理的“分数的基本性质教案(优质5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
《分数的基本性质》说课稿【第一篇】
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
五年级数学《分数基本性质》说课稿【第二篇】
一、说设计理念
1、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
2、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容:
《分数的基本性质》一课是苏教版五年级下册第六单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变规律等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。要注意加强整数商不变规律的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、教学目标:
(1)理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变规律的关系。
(2)能运用分数的基本性质把一个分数化成指定分母或分子而大小不变的分数。
(3)经历探索分数基本性质的过程,感受“变与不变”数学思想方法。培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
3、教学重点:
理解和掌握分数的基本性质。
4、教学难点:
学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、启发式教学法:运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
3、直观演示法:验证时,先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
四、说学法
学生在学习分数的基本性质时,引导学生采用猜想验证法、操作体验法,从学生已有的知识经验出发,复习商不变的规律及分数与除法之间的关系,学生自然就想到分数中是否也存在类似的规律,然后让学生提出,进行验证。
古人云:“授之以鱼,不如授之以渔。”教师只是学生的组织者、合作者和引导者,学生才是学习的小主人。新课程提倡:过程重于结果。在探索和操作中我采用了观察、归纳和引导发现法。
五、教学过程:
本节课我打算采用“创设情境,感知规律--研究素材,猜测规律--讨论交流,验证规律--巩固拓展,应用规律”的教学模式进行教学。
1、创设情境,感知规律。
首先创设了动手操作的情境:让学生折一折纸条。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2、研究素材,猜测规律。指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、讨论交流,验证规律
我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、3/6、4/8这些分数有什么关系?
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
最后,让学生完整地概括出分数的基本性质。这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
4、巩固拓展,应用规律。为了加深学生对分数基本性质的理解,激发学生的学习兴趣,我设计了一些练习让学生强化训练,巩固教学效果。
分数的基本性质说课稿【第三篇】
把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。
分数的基本性质
1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。
教学过程
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例
1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)
(2)观察 例2.比较 的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质
1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。
2、为什么要零除外?
3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
四、应用分数基本性质解决实际问题
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)
(1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。
板书:
教师提问:
(1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)
五。课堂练习
1、把下面各分数化成分母是60,而大小不变的分数。
2、把下面的分数化成分子是1,而大小不变的分数。
3、在( )里填上适当的数。
4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?
5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。
六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。
七、课后作业
1、指出下面每组中的两个分数是相等的还是不相等的。
2、在下面的括号里填上适当的数。
分数的基本性质(说课稿)
理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。
分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。
学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的`同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。
分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。
在教学中,采用小组合作学习的办法,通过给3张纸涂色、折叠、观察、探索进行规律性的总结。在进行小组汇报时,教师揭示了知识间的联系,鼓励学生用不同的理解方法、不同角度进行汇报分数基本性质的可行性,为学生的思维留下了创造空间。在学生总结规律后,为了加深对分数的性质的理解,还可以让同学举一些符合规律的例子进行说明。教学实践中,要注重培养学生揭示知识间的联系、探索规律、总结规律的能力。
分数的基本性质说课稿【第四篇】
各位老师,大家好!今天我说课的内容是课程标准试验教科书数学五年级下册第四单元第三课时"分数的基本性质"。下面我从设计理念,教材,教法,学法几个方面进行说课。
一、说设 计理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及"用数学学数学"等数学思想方法。
二、说教材
1、教学内容:
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。教材在讲解这一知识点时,应注意加强整数商不变性质的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析:
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
3、教学重点:理解和掌握分数的基本性质。
4、教学难点:学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。
6、教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
"将课堂还给学生,让课堂焕发生命活力",为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
想法是好的,但是,操作是难的,加上本人能力有限,教学过程中还是出现几次失误,请各位老师多提宝贵意见。
分数的基本性质教案【第五篇】
教学目标
1、进一步理解通分的意义,
2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。
3、能灵活的运用通分的方法进行分数的大小比较。
教学重难点:运用通分的方法进行分数大小比较
教学准备:分数卡片
一、回顾
1、什么是通分?怎样通分?
2、我们可以在什么时候应用通分?
3、互动:相互出题练习相互交流(3分钟)
二、教学例5
出示例题:小芳和小明看一本同样的故事书。
学生提出问题。
分析解答。
师:谁看的页数多?
这个问题实质是什么?
生:比较两个分数的。大小。
师:小组研究,比较两个分数的大小。
方法一:画图比较
方法二:通分比较
转化成同分母的分数
方法三:化成小数再比较
学生汇报,分类领悟比较的方法。
注意方法的规范。
你还有什么别的比较方法吗?
:通分的方法在比较分数大小中的运用
三、巩固练习
1、先通分,再比较下面各组分数的大小66页练一练
2、练习十二第五题
3、先明确题目的要求有两个。
4、自由练习
分小组编拟交换练习
四、全课
五、课堂作业:
第7题,第8题。
上一篇:《四时田园杂兴》教案精选8篇
下一篇:幼儿美术教案(优推4篇)