不等式及其解集的教案设计精编4篇

网友 分享 时间:

【前言导读】这篇优秀教案“不等式及其解集的教案设计精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

教案 不等式及其解集【第一篇】

不等式及其解集

教学目标

1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

教学难点

正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

重点

建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程

教学过程 提出问题

1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?

2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?

探究新知

(一)不等式、一元一次不等式的概念

1、用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。

2、下列式子中哪些是不等式?(1)a+b=b+a(2)-3>-5(3)x≠l(4)x十3>6(5)2m

3、小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.

(二)不等式的解、不等式的解集

问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?

问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时千米呢?每小时74千米呢?

问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式>50的解?

问题4,数中哪些是不等式>50的解: 76,73,79,80,,,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?

讨论后得出:当x>75时,不等式>50成立;当x 50不成立。这就是说,任何一个大于75的数都是不等式>50的解,这样的解有无数个。因此,x>75表示了能使不等式>50成立的“x”的取值范围。我们把它叫做不等式>50的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法).

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.

巩固新知 练习123页1。2。3 总结归纳

1、不等式与一元一次不等式的概念;

2、不等式的解与不等式的解集;

3、不等式的解集在数轴上的表示.

作业:

不等式及其解集的教案设计【第二篇】

教学目标

1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;

3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

知识重点寻找实际问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念

提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?

(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

探究新知

1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。

2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

(1)什么情况下,到甲商场购买更优惠?

(2)什么情况下,到乙商场购买更优惠?

(3)什么情况下,两个商场收费相同?

3、我们先来考虑方案:

设购买x台电脑,如果到甲商场购买更优惠。

问题1:如何列不等式?

问题2:如何解这个不等式?

在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x

去括号,得

去括号,得:6000+4500x-45004<4800x

移项且合并,得:-300x<1500

不等式两边同除以-300,得:x<5

答:购买5台以上电脑时,甲商场更优惠。

4、让学生自己完成方案(2)与方案(3),并汇报完成情况。

教师最后作适当点评。鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合

作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模。

完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。

解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠?

问题1:这个问题比较复杂。你该从何入手考虑它呢?

问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑?

分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

最后教师总结分析:

1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

3、如果累计购物超过100元,又有三种情况:

(1)什么情况下,在甲商场购物花费小?

(2)什么情况下,在乙商场购物花费小?

(3)什么情况下,在两家商场购物花费相同?

上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性。应把

握学生的创新潜能,使不同层次的学生都能得到发展。

这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。

引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去

解决所遇到的问题。

总结归纳通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。让学生在积极愉快的气氛中温习本节课学到的知识和技能,体会收获的喜悦。

小结与作业

布置作业1、必做题:教科书第140页习题第1题(1)(2)第3题1、2。

2、选做题:教科书第141页习题第5、6题

3、备选题。

(1)某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司。经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按折收费;乙公司的优惠条件则是全体师生都按8折收费。

①当学生人数超过多少时,甲公司的价格比乙公司优惠?

②经核算,甲公司的优惠价比乙公司要便宜金,问参加旅游的学生有多少人?

(2)某单位要制作一批宣传资料。甲公司提出:每份材料收费20元,另收设计费3000元;乙公司提出:每份材料收费30元,不收设计费。

①什么情况下,选择甲公司比较合算?

②什么情况下,选择乙公司比较合算?

③什么情况下,两公司收费相同?

(3)某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费元;“神州行”没有月租费,每分钟通话费元(两种通话均指市内通话).如果一个月内通话x分钟,选择哪种通讯业务比较合算?

(4)某商场画夹每个定价20元,水彩每盒定价5元。为了促销,商场制定了两种优惠办法:一是买一个画夹送一盒水彩;一是画夹和水彩均按九折付款。章老师要买画夹4个,水彩若干盒(不少于4盒).问:哪种方法更优惠?

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本课设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。

教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。

不等式及其解集教案【第三篇】

不等式及其解集

教学目标

1、知识与技能:了解不等式概念,理解不等式的解集,能正确的用数轴表示不等式的解集; 2.过程与方法:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化能力,培养学生的数感,通过用数轴鄙视不等式的解集渗透数形结合的思想; 3.情感、态度与价值观:进一步培养学生的数学思维和参与数学活动的自信心、合作交流意识,教学重难点

重点:不等式的解集的表示。难点:不等式的求解及解集的表示。

教学过程

一、课题引入

1.看一看,比一比(展示图片)①姚明和李连杰 ②小孩与冬瓜 ③公路上的限时标记

从上面的图片中让我们感受到生活中的问题:如身高、体重、速度等需要将对象具体数量化,才能进行交流和判断,不但要学习研究等量关系,还需学习和研究不等关系.

设计意图:从生活中抽出实例让学生体验到数学是源于生活的。2.请观察下列式子是等式的有哪些?

(1)25(2)x32x(3)4x2y0(4)a2b(5)x2x1(6)a2a(7)5m38(8)x4(9)

2168x2(10)16 7x5设计意图:通过对等式的回忆,让学生在脑海中有个比较,形成初步概念。

二、讲授新课

1、什么是不等式

观察下面两个式子,他们之间有何区别

8x8x1616

5“ < ” 读作小于、“>”读作大于、“≠”读作不等于、“≤”读作小于或等于、“≥”读作大于或等于,都是不等号。

设计意图:通过与等式的比较,加深对不等式的理解。练习:根据题意,列出关系式,并判断是不是不等式

题目 关系式 判断(1)3小于2 32 是不等式(2)用字母y表示一个数,若y有倒数, y0 是不等式

则y需满足什么条件?

(3)数a与b的差为1 ab1 不是不等式(4)如图,天平左盘放3个小球,右盘放

5g砝码,天平倾斜。设每个小球的质量为x(g),3x5 是不等式 怎样表示x与5之间的关系?

用不等号号连接

用等号连接

像这样用等号连接表示相等关系的式子叫等式。

像这样用不等号连接表示不等关系的式子,叫做不等式(inequality)。2.什么是一元一次不等式

观察下列两个式子,它们未知数的个数与次数有何特点?

8x8x1616

只含有一个未知数,未知数的次数是一次

像这样,含有一个未知数,未知数的次数是一次的方 程,叫做一元一次方程 类似地,含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式

设计意图:利用一元一次方程进行对比,理解一元一次不等式。练习:下列式子中,有哪些是一元一次不等式(1)32(2)32x5(3)a21(4)

218x2(5)16 6x5(6)4x3y(7)x2x12(8)3x52 答:(2)(3)(5)(8)3.不等式的解集即表示

思考:对于不等式x10,你能找到一个符合条件的x的值吗?

(1)使不等式成立的未知数的值叫做不等式的解。

(2)一个不等式的所有解组成这个不等式的解集(solution set)。(3)不等式解集的表示: 文字语言 小于10的数 数学语言 x10 图象语言(数轴表示)

05101520(4)一元一次不等式的解集一般来说有以下四种情况:

xa

0xa

0xa

0xa

三、课堂练习

01、已知下列各数,请将是不等式 3x>5的解的数填到椭圆中 -4,-,0,1,2, , 3, 8

2、下列说法正确的是(A)是不等式-3x<6的一个解 =3是不等式x+1>2的解集 C.不等式-4x>8的解集是x=-2 D.不等式-6x<18的解集为x≤-3

四、课堂小结

不等式3x>5的解

1、如何区分不等式的解和解集? 2.谈谈你对不等式有了哪些认识?

五、课后作业

1、必做题: 作业本不等式及其解集

2、选做题: 能否寻求用其它方法求一元一次不等式的解集。

不等式及其解集的教案设计【第四篇】

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点? 审题,根据实际问题列出不等式.

例题? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物花费少;

(3)当x > 100时,到甲商场的花费为100+(x-100) , 到乙商场的花费为50+(x-50)则

50+(x-50) > 100+(x-100),解之得x >150

50+(x-50) < 100+(x-100),解之得x < 150

50+(x-50) = 100+(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

> 100+(x-100),解之得x >

< 100+(x-100),解之得x <

= 100+(x-100),解之得x =

答:当x>时,选乙公司较好;当0 < x <时,选甲公司较好;当x=时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种,一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

20 2044909
");