乘法运算定律教学设计(精编4篇)

网友 分享 时间:

【导言】此例“乘法运算定律教学设计(精编4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

乘法运算定律教学设计1

学习目标

1、知道乘法结合律,能运用运算定律进行一些简便运算。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性

3、能用所学知识解决简单的实际问题。

学习难点:

探究和理解结合律,能运用运算定律进行一些简便运算。

学习重点:

探究和理解结合律,能运用运算定律进行一些简便运算。

教学流程:

主题图引入(观察主题图,根据条件提出问题。)

一、自学提纲

1、针对上面的问题1列出算式,有几种列法。

2、为什么列的'式子不同,它们的计算结果是怎样的。

3、两个算式有什么特点?你还能举出其他这样的例子吗?

4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?

5、乘法结合律有什么作用。

6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?

7、这组算式发现了什么?

二、小组合作学习

根据自学指导,交流汇报,验证。

1、小组讨论乘法的结合律、结合律用字母怎样表示。

2、各小组展示自己小组记定律的方法。

3、分别说说是用什么方法记住这些运算定律的。

4、讨论为什么要学习运算定律。

先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

三、交流汇报,集体订正

四、当堂训练

1、下面的算式用了什么定律

(60×25)×8=60×(25×8)

2、 27/2—4 P25/做一做2

3、在□里填上合适的数。

30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□

乘法运算定律教学设计2

教学内容:

义务教育课程标准实验教科书四年级数学下册第三单元页

教学目标:

1:使学生认识并掌握乘法交换律、结合律,在理解的基础上灵活运用。

2:使学生亲历“回顾再现——观察比较——迁移类推——归纳概括”的数学思维过程,培养学生的各种能力,从而初步形成适应终身学习的技能基础。 3:在探究问题的过程中感受数学知识之间的内在联系,培养学生的数学情趣。

教学重点:

使学生理解并掌握乘法交换律、乘法结合律。

设计意图学生刚刚学习了加法交换律、加法结合律,而乘法交换律、乘法结合律与之有很大相同之处。为了充分发挥学生已有的认知水平,运用已有的知识经验,我设计了以迁移类推为主的《乘法交换律、结合律》一课的教学,其目的是:使学生在老师的引导下,学会探究新知的方法,并在探究新知的过程中使学生的各种能力得到形成和发展。为学生的终身学习与发展奠定基础。教学过程:

一、复习铺垫

1:回答:前面我们学习了什么定律?请你用语言描述,用字母表示好吗?师:从刚才同学们的回答中可以看出来对加法交换律、加法结合律的掌握较好。我相信你们对于乘法一定学得也不错,下面的题目你们一定觉得很轻松。 2:旧知回顾

师:根据“七八五十六”这句口诀,请你写出两道乘法算式来。

师:你还能说出这样的口诀并写出相应的算式吗?(学生口答板书如下)7×8﹦56 6×7﹦42 3×7﹦21

8×7﹦56 7×6﹦42 7×3﹦21

设计意图通过引领学生再现旧知(加法运算定律、乘法口诀)为学生探索新知搭建知识的桥梁。

二:探索新知

(一)探索乘法交换律

1:观察上面每组算式,你有什么发现?用你自己的话说一说。两个(数相乘,交换位置,积不变)

2:引领验证

师:不是乘法口诀会不会也像你发现的那样呢?算了下面的两组题你会明白的。

25×4﹦17×23﹦

4×25﹦23×17﹦

3:概括乘法交换律

师:根据计算结果,你能再概括乘法运算中的这种规律吗?你认为怎样称呼这一规律?(乘法交换律)你怎么会想到这样的称呼?(有加法交换律想到的)师:正如你们说的,这就叫“乘法交换律”你们真会推想。请你们试着用字母表示它。(随机板书a ×b﹦b ×a)

设计意图在学生获得大量感性认识的基础上,通过引领,使学生运用迁移类推的方法轻松而自然地获取乘法交换律。

4:巩固知识

(1)口答:15×23﹦8×125﹦

(2)口答:17×﹦36××126﹦×37

(3)下面每组算式同桌比一比,看谁算得快。换过来试一试,你对乘法交换律有什么更深的认识?

25×126×4﹦

(4)组织反馈交流

设计意图通过层层递进和开放性题目的练习,使学生进一步理解,共苦乘法交换律。通过比一比使学生感受乘法交换律在计算中的。应用价值,初步建立简便计算的理念。

师:刚才,同学们的表现太棒了,简单的计算却蕴含着如此奥妙,希望同学们继续发挥潜能探索更加深奥的数学奥秘。

(二)探索乘法结合律

师:同学们知道每年的3月12日是什么节吗?你了解植树的重大意义吗?有一所学校组织了一批学生正在进行植树活动,同学们干得很起劲,我们一起去现场看看吧。(四年级的同学参加植树活动,一共有25个小组,每组里4人负责种树,2人负责浇水。)小组内说一说你了解到的信息。

师:根据现有的数学信息你能提出哪些数学问题?

设计意图有时候提出问题比解决问题更重要,通过课本的主题情境图,培养学生了解数学信息并能根据信息提出问题,在提出问题的过程中,学生的思维得到了锻炼。

2:解决问题初步建立乘法结合律感念

师:刚才同学们提出很多很有价值的问题,从中可以看出同学们发现问题的能力很强,相信你们解决问题的能力也一定很强。(1)请回答:负责挖坑、种树的一共有多少人?怎样列式解答?(指名口

答,板书:25×4﹦或者4×25﹦体现了什么定律?(乘法交换律)

(2)请同学们笔答:一共要浇多少桶水?(学生独立解答,同桌可以交流

意见)

(3)组织反馈交流(请学生上台来展示,要求不同列式的学生。)25×2×5 5×2×25 25×5×2

(25×2)×5(25×5)×2 25×(2×5)

(4)引导概括,初步建立乘法结合律概念

师:从上面算式和结果中,你又有什么新发现?(三个数相乘,无论哪两个先乘,积不变。)

设计意图在解决问题,合作交流的过程中,使学生感受到数学与生活的紧密联系和应用价值,这里既有乘法交换律的理解与应用,又让学生初步建立乘法结合律的概念,从而为进一步探索乘法结合律做好充分的准备。 3:引导概括,形成乘法结合律

(1)激发引导

师:你们的发现非常符合上面算式的实际,很有发展性,这些算式中又蕴含着乘法一运算定律,请你们会想一下加法结合律,然后对上面的算式做出选择,写成两组等式,以小组为单位开始吧!

(2)(25×2)×5﹦(25×5)×2

(25×5)×2﹦25×(2×5)

(3)观察概括

师:通过观察说一说你的发现(指名说一说)

生:三个数相乘,先乘前两个数或者先乘后两个数,积不变师:说得太好了!你们知道该怎么称呼这一规律吗?(乘法结合律)我想你们一定是由加法结合律想到的,这种思考问题的方法叫迁移类推,在今后的学习中会不断的用到,下面我们共同的用字母表示乘法结合律(a ×b)×c﹦a ×(b×c)

设计意图通过引领学生继续运用迁移类推的方法探索乘法结合律,使学生在探索中能力得到提高,技能得到发展,从而形成适应终身学习的方法基础。

(4)巩固运用,提升乘法结合律(1)填□

5×(14×9)=(5×□)×14

125×(8×13)=(□×□)×13

a ×25×4=□×(□×□)

6×13×5=13×(□×□)

(2)算一算,比一比,想一想,你有什么感受?

15×1215×2×6

36×259×(4×25)

设计意图在层次分明循序渐进并有开放性的练习中,使学生进一步巩固和理解乘法结合律。

三:新知推广,内化提高

29×4×5 4×(35×25)125×23×8

40×52×25 4×8×25×125 16×17×5

设计意图通过此环节,使学生进一步理解并巩固乘法交换律、乘法结合律,在解决问题的过程中灵活运用,使学生的知识,技能得到进一步的锻炼和发展。

四:回顾反思,拓展延伸

1:回顾反思

(1)知识回答:请你说说你收获了哪些知识?

(2)方法回顾:

师:看来你们的收获还真不少,你能和加法交换律、加法结合律比较一下,有什么新的想法?

2:拓展延伸

师:前面有同学提出“一共有多少同学参加了这次植树活动?”你想不想解决这个问题?你能想到几种列式方法?你一定会有新的发现,祝你成功!

设计意图通过对本节课知识、情感、方法的问题、梳理,使之内化为能力,通过课外延伸,激发学生进一步探究新知的欲望,为学习乘法分配律打下基础。

乘法运算定律教学设计3

教学目标:

进一步掌握乘法运算定律,会根据不同算式的特征,正确灵活、合理选择运算定律进行简算,提高应用乘法运算定律进行简便计算的能力。

教学过程:

(一)明确目标。

出示上节课出来的本单元的框架,指出本节课要复习的内容,并提出要求,掌握乘法的三个运算定律,并能灵活的运用于简便计算。

(二)复习定律

1、简算。

4×13×25125×(8+80)

全班练习、两位学生板演,完成后反馈校对,并说明计算的理由。教师板书运算定律的名称。

2、掌握定律。

简要的`叙述运算定律和字母表示,学生回答,教师板书相应的字母公式。

根据字母公式,比较乘法结合律和乘法分配律有什么区别?根据字母公式说说他们的结构特征。

(三)定律运用

1、课本第6题

(1)归类,各应用什么运算定律可以使运算简便,画出具有特征的数学运算符号。

(2)全班练习,完成上面一行3题,完成后反馈校对,指出每一题的特征。

(3)全班练习,完成下面一行3题,完成后反馈校对,指出每一题的特征。

2、判断、改错练习。

(1)400×(25+1)=400×25+1

(2)(64+4)×25=64×25+25

(3)25×32=25×(4×8)=25×4+25×8

(四)综合练习

1、练习第7题。

(1)找出能运用乘法运算定律的算式,并各自归入相应运算定律类型中。

(2)余下的两题:32+144+68+56,1230-216-184,为什么不能归入相应的类型?他们可以简算吗?

(3)独立练习。

(4)反馈矫正。

2、两步四则混合运算练习。

(1)计算课本第8题,完成后校对。

(2)计算第9题,完成后的、反馈讲评。

3、应用题练习。

(1)独立练习第10题。

(2)反馈讲评,对25×400+25×400、25×400×2两种方法进行比较。

4、思考题指导。

(1)独立思考2分钟。

(2)指名已解答的同学说思路。

(五)巩固知识结构

通过两节课,我们对第一单元进行了系统的复习,说一说第一单元中学到了哪些知识,掌握了哪些本领?还有什么不清楚的地方?

(六)作业:《作业本》

乘法运算定律教学设计4

教学内容:

义务教育课程标准实验教科书四年级数学下册第三单元页

教学目标:

1:使学生认识并掌握乘法交换律、结合律,在理解的基础上灵活运用。

2:使学生亲历“回顾再现——观察比较——迁移类推——归纳概括”的数学思维过程,培养学生的各种能力,从而初步形成适应终身学习的技能基础。 3:在探究问题的过程中感受数学知识之间的内在联系,培养学生的数学情趣。

教学重点:

使学生理解并掌握乘法交换律、乘法结合律。

设计意图学生刚刚学习了加法交换律、加法结合律,而乘法交换律、乘法结合律与之有很大相同之处。为了充分发挥学生已有的认知水平,运用已有的知识经验,我设计了以迁移类推为主的《乘法交换律、结合律》一课的教学,其目的是:使学生在老师的引导下,学会探究新知的方法,并在探究新知的过程中使学生的各种能力得到形成和发展。为学生的终身学习与发展奠定基础。教学过程:

一、复习铺垫

1:回答:前面我们学习了什么定律?请你用语言描述,用字母表示好吗?师:从刚才同学们的回答中可以看出来对加法交换律、加法结合律的掌握较好。我相信你们对于乘法一定学得也不错,下面的题目你们一定觉得很轻松。 2:旧知回顾

师:根据“七八五十六”这句口诀,请你写出两道乘法算式来。

师:你还能说出这样的口诀并写出相应的算式吗?(学生口答板书如下)7×8﹦56 6×7﹦42 3×7﹦21

8×7﹦56 7×6﹦42 7×3﹦21

设计意图通过引领学生再现旧知(加法运算定律、乘法口诀)为学生探索新知搭建知识的桥梁。

二:探索新知

(一)探索乘法交换律

1:观察上面每组算式,你有什么发现?用你自己的话说一说。两个(数相乘,交换位置,积不变)

2:引领验证

师:不是乘法口诀会不会也像你发现的那样呢?算了下面的两组题你会明白的。

25×4﹦17×23﹦

4×25﹦23×17﹦

3:概括乘法交换律

师:根据计算结果,你能再概括乘法运算中的这种规律吗?你认为怎样称呼这一规律?(乘法交换律)你怎么会想到这样的称呼?(有加法交换律想到的)师:正如你们说的,这就叫“乘法交换律”你们真会推想。请你们试着用字母表示它。(随机板书a ×b﹦b ×a)

设计意图在学生获得大量感性认识的基础上,通过引领,使学生运用迁移类推的方法轻松而自然地获取乘法交换律。

4:巩固知识

(1)口答:15×23﹦8×125﹦

(2)口答:17×﹦36××126﹦×37

(3)下面每组算式同桌比一比,看谁算得快。换过来试一试,你对乘法交换律有什么更深的认识?

25×126×4﹦

(4)组织反馈交流

设计意图通过层层递进和开放性题目的练习,使学生进一步理解,共苦乘法交换律。通过比一比使学生感受乘法交换律在计算中的应用价值,初步建立简便计算的理念。

师:刚才,同学们的表现太棒了,简单的计算却蕴含着如此奥妙,希望同学们继续发挥潜能探索更加深奥的数学奥秘。

(二)探索乘法结合律

师:同学们知道每年的3月12日是什么节吗?你了解植树的重大意义吗?有一所学校组织了一批学生正在进行植树活动,同学们干得很起劲,我们一起去现场看看吧。(四年级的同学参加植树活动,一共有25个小组,每组里4人负责种树,2人负责浇水。)小组内说一说你了解到的信息。

师:根据现有的数学信息你能提出哪些数学问题?

设计意图有时候提出问题比解决问题更重要,通过课本的主题情境图,培养学生了解数学信息并能根据信息提出问题,在提出问题的过程中,学生的思维得到了锻炼。

2:解决问题初步建立乘法结合律感念

师:刚才同学们提出很多很有价值的问题,从中可以看出同学们发现问题的能力很强,相信你们解决问题的能力也一定很强。(1)请回答:负责挖坑、种树的一共有多少人?怎样列式解答?(指名口

答,板书:25×4﹦或者4×25﹦体现了什么定律?(乘法交换律)

(2)请同学们笔答:一共要浇多少桶水?(学生独立解答,同桌可以交流

意见)

(3)组织反馈交流(请学生上台来展示,要求不同列式的学生。)25×2×5 5×2×25 25×5×2

(25×2)×5(25×5)×2 25×(2×5)

(4)引导概括,初步建立乘法结合律概念

师:从上面算式和结果中,你又有什么新发现?(三个数相乘,无论哪两个先乘,积不变。)

设计意图在解决问题,合作交流的过程中,使学生感受到数学与生活的紧密联系和应用价值,这里既有乘法交换律的。理解与应用,又让学生初步建立乘法结合律的概念,从而为进一步探索乘法结合律做好充分的准备。 3:引导概括,形成乘法结合律

(1)激发引导

师:你们的发现非常符合上面算式的实际,很有发展性,这些算式中又蕴含着乘法一运算定律,请你们会想一下加法结合律,然后对上面的算式做出选择,写成两组等式,以小组为单位开始吧!

(2)(25×2)×5﹦(25×5)×2

(25×5)×2﹦25×(2×5)

(3)观察概括

师:通过观察说一说你的发现(指名说一说)

生:三个数相乘,先乘前两个数或者先乘后两个数,积不变师:说得太好了!你们知道该怎么称呼这一规律吗?(乘法结合律)我想你们一定是由加法结合律想到的,这种思考问题的方法叫迁移类推,在今后的学习中会不断的用到,下面我们共同的用字母表示乘法结合律(a ×b)×c﹦a ×(b×c)

设计意图通过引领学生继续运用迁移类推的方法探索乘法结合律,使学生在探索中能力得到提高,技能得到发展,从而形成适应终身学习的方法基础。

(4)巩固运用,提升乘法结合律(1)填□

5×(14×9)=(5×□)×14

125×(8×13)=(□×□)×13

a ×25×4=□×(□×□)

6×13×5=13×(□×□)

(2)算一算,比一比,想一想,你有什么感受?

15×1215×2×6

36×259×(4×25)

设计意图在层次分明循序渐进并有开放性的练习中,使学生进一步巩固和理解乘法结合律。

三:新知推广,内化提高

29×4×5 4×(35×25)125×23×8

40×52×25 4×8×25×125 16×17×5

设计意图通过此环节,使学生进一步理解并巩固乘法交换律、乘法结合律,在解决问题的过程中灵活运用,使学生的知识,技能得到进一步的锻炼和发展。

四:回顾反思,拓展延伸

1:回顾反思

(1)知识回答:请你说说你收获了哪些知识?

(2)方法回顾:

师:看来你们的收获还真不少,你能和加法交换律、加法结合律比较一下,有什么新的想法?

2:拓展延伸

师:前面有同学提出“一共有多少同学参加了这次植树活动?”你想不想解决这个问题?你能想到几种列式方法?你一定会有新的发现,祝你成功!

20 1398464
");