《组合图形的面积》教案【优秀4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《组合图形的面积》教案【优秀4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

组合图形面积的计算【第一篇】

计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。

本堂课我创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,先不给出数据,给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“根据最少的数据,寻求求面积的方法”这个思维策略思想,让学生比较各种方法,使方法优化,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。整堂课我主要体现了以下几点。

1. 授人以鱼,不如授人以渔。策略的知识、方法的知识比技能技巧更重要。本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到(分割、添补、割补)的转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。当学生采用分割法学会了小房子侧面面积的计算后,我就设计了让学生帮我解决家里铺地板的面积计算练习,学生多样化的思考方法,在课堂上一一得到了展示,智慧的火花不断碰撞,又探讨出了另一种方法—— 添补法。

2. 充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。本节课由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

3. 注重学生思维的发展。由于学生的认知背景和思维方式不同,决定着计算方法也有所不同。学生每一种求组合图形面积的计算的方法都蕴含着富有个性的思维方式,只要是学生探索发现的算法,印象就会特别深刻,运用起来就会游刃有余,并能获得满足、快乐等情绪体验,增强学好数学的自信心。对于学生个体来说,这种适合学生自己思维个性的方法,就是的。因此,我在教学中充分让学生自主探索算法。即使学生选择的方法不够简便,也要给学生充足的时间去体验、比较、反思,最后自觉地去接受其他较好的方法。学生在学习中从不同的角度去思考图形的组合,把前面学过的知识都灵活地调动起来,实现知识的综合应用。

4.注重学生的动手操作能力,直观地感受组合图形。课的开始的就让学生用信封中的图形,“拼一拼”,看能得到什么图形?像什么?让学生在动手操作的过程中感悟到组合图形的由来,从而能更清晰的解剖组合图形,为组合图形的面积计算做好铺垫。

当然在教学中也有许多地方值得反思。

1. 时间的掌控不当,使学生失去了联系巩固的机会。本节课我只完成了三组组合图形的面积计算,学生在讨论方法的时候,方法比较多,在一一罗列讲解的同时,时间也在慢慢地消逝,这样学生的联系就相对比较少,巩固不够扎实。还如在课堂中本来想让学生找一找我们生活中的组合图形,但由于时间关系,这一环节被舍去了,很遗憾。

2.让学生找三个组合图形的面积计算的数据是否必要。由于想让学生感受在组合图形中我们要去发现一些有效的信息,因此在设计的时候我让学生通过自己测量各个组合图形的数据,找求出组合图形面积的有效的信息,这样花去了时间不说,对于基础比较落后的学生来说就无从下手了,他们不知道需要哪些数据,看着图很茫然,这样这节课对于中上水平的学生来说很有意思,但对于后进生这节课的学习就很失败。

组合图形面积的计算【第二篇】

教学内容:92和93页 练习十八

教学目标:1. 明确组合图形的意义;

2. 知道求组合图形的面积就是求几个图形面积的和(或差);

3. 能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

教学过程:

一、复习

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab

“第二个图形呢?” ……

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。

教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出92页页的四幅图有哪些图形?

2、引导学生把下面的图形,组合成多边形(展示台上拼)

对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

分别说出这些图形是由哪几个简单的图形组合而成。

师:怎样计算这些组合图形的面积呢?(板题)

二、组合图形面积的计算。

1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

订正,讨论第一图的两种方法。

5×5+5×6÷2 [5+(5+6)]×5÷2

=25+15 =16×5÷2

=40(平方厘米) =40(平方厘米)

5m

m

2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

5×5+5×2÷2

还能用其他的划分方法求出它的面积吗?(分组讨论)

汇报讨论结果。可能有下面情况。

[5+(2+5)]×(5÷2)÷2×2

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如——图示,能容易找出所需的数据吗?)

三、巩固初步

1.做一做/书93页

2.练习十八/第1题

3.练习十八/第2题

(1)由中队旗引入

(2)算出它的面积。(单位:厘米)——可能有下面几种情况

s总=s梯×2 s总=s长—s三

5.练习十八/第3、4题

四、拓展练习

练习十八8*

组合图形面积的计算【第三篇】

练习内容:练习十八第1-8题。

练习目标:

1、使学生进一步认识组合图形,进一步掌握组合图形面积的计算方法,提高应用所学知识和解决问题的能力。

2、让学生在独立解决简单的实际问题及合作交流的过程中加深对所学知识的理解,提高掌握水平。

一、复习

1、提问:什么是组合图形?(由几个简单图形组成的图形。)计算组合图形的面积一般有几种方法?(分割法、添补法)

2、这个图形可以看成哪些基本图形的组合?

3、下图涂色部分是个圆环形。它的外圆半径是 10厘米,内圆半径

是 6厘米。它的面积是多少?

二、指导练习

1、练习十八第1题。

先让学生独立解决问题,再组织学生交流算法。

(1)分割法。

把它分割成两个梯形,求这两个图形的面积和。

[(60+45)×(30÷2)÷2]×2

把它分割成一个长方形和两个三角形,求这三个图形的面积和。

30×45+[30÷2×(60-45)÷2]×2

(2)添补法

添上一个三角形,求长方形和三角形的面积差。

(30×60)-[30×(60-45)÷2

2、练习十八第2题。

先让学生独立解决问题,再组织学生交流算法。

3、练习十八第3题。

先让学生独立解决问题,再组织学生交流算法。

本题解题思路是:空心地砖实际占地面积=大正方形面积-小正方形面积

4、练习十八第4题。

先让学生独立解决问题,再组织学生交流算法。

本题解题思路是:草地的面积=梯形的面积-长方形的面积

5、练习十八第5题。

先指导学生理解题意,尤其是要指导学生看图,它不是两幅图,而是一个组合图形的分解图。

接着,让学生独立解决问题,再组织学生进行全班交流。

(2+10)×12÷2-3×4÷2-(4+6)×4÷2

6、练习十八第6题。

先让学生独立解决问题,再组织学生进行全班核对。

10×20+20×10÷2

7、练习十八第7题。

先指导学生理解题意,让学生明确要求火箭模型平面图的面积,就是求图中三角形、长方形、梯形的总面积。

接着,让学生独立解决问题,再组织学生进行全班交流。

8×10÷2+8×70+(8+16)×8÷2

三、拓展练习

指导学生完成教科书第95页练习十八的第8题。

先指导学生理解题意,让学生明确要求各部分的面积应先求出总面积(即图中长方形的面积),然后,根据各部分与总面积之间的关系分别求出相应的面积。

接着,让学生独立解决问题,再组织学生进行全班交流。

四、全课小结

通过这节课的练习,你们有什么体会?

五、作业

1、根据给出的数据,计算图形的面积:

2、如图,一张硬纸板剪下4个边长5厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

组合图形面积的计算【第四篇】

教学内容:92和93页例4、 练习十八第1、2题。

教学目标:

1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积。

2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积。

3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。

教学过程:

一、复习。

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab

“第二个图形呢?”

……

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。

?可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出有哪些图形?

师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(92页的四幅图),认一认,它们是什么?

这些图片分别是由哪几个平面图形组成的?

这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?

师:组合图形是由几个简单的图形组合而成的。

问:说一说,生活中哪些物体的表面可以看到组合图形?

同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。[板书课题]

三、组合图形面积的计算。

1.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。 图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

2.如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?

先在小组内讨论方法,再后打开书计算,同时指名板演。

5×5+5×2÷2

[5+(2+5)]×(5÷2)÷2×2

集体订正时问:你将组合图形分成了哪几个基本图形?算式的每一步求的是什么?

比较一下,你喜欢哪种算法?为什么?

师:我们在计算组合图形面积时,要根据已知条件对图形进行分解,分解图形要尽量选择最简便的方法进行计算,特别要有计算面积所必需的数据。

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积。

三、巩固初步

页做一做

让学生独立完成,核对时说一说自己是怎样选择的。

2.练习十八/第2题

(1)由中队旗引入,请同学们选择有用的数据算出它的面积。

(2)指名板演,展示不同的算法,对于不同的算法,师生共同比较哪种方法比较简便。可能有下面几种情况:

s总=s梯×2          (80—20+80)×30  ÷2×2

s总=s长—s三         80×60—(30+30)×20÷2

s总=s长+s三×2    (80—20)×(30+30)+(30×20÷2)×2

四、全课小结

这节课你学会了什么?有什么收获?

五、作业:练习十八第2题

教学反思:

这节课知识点难吗?我觉得除了计算步骤稍多点之外其实并无太大知识障碍。可在今天的教学后我却倍感失败。

一、例1第二种算法教学失败。

教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了“可以把它分成两个完全一样的梯形”,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到“其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。”

我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?

再教设计

再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。

二、作业的格式教学失败。

教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是“各具特色”,很不统一。在这一失误中,让我常常体会到“其身正,不令而行;其身不正,虽令不从。”

其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了“÷2”均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。

再教设计

要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧

困惑:当把图形变形后的列式该如何评价?

有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)×(5÷2)这种列式可行吗?

组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?

20 1598775
");