组合图形的面积教学设计 组合图形的面积教学设计4篇

网友 分享 时间:

【导言】此例“组合图形的面积教学设计 组合图形的面积教学设计4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

组合图形的面积教学设计【第一篇】

学习目标:

1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

教学重点:能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具准备:图形卡片

教学过程:

一、联系学生生活,引入新课。

数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

1.实物投影:同学们,你们说说这些图形像什么?

师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

2.出示基本图形,从而复习已学过的基本知识。

师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

二、教学新课。

学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

1.在拼图活动中认识组合图形。

师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

生:利用实物投影展示自己的作品。

师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)

师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

师:说说这里面有你认识的图形吗?你是怎样看出来的?

师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

师:学生展示交流结果。

(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

师:刚才大家的学习都很积极努力,接下来要继续加油呀!

2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

3.在探索活动中寻找计算方法。出示例题:

师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

师:现在请你估计一下,客厅的面积有多大?

师:这个图形实际上就是一个什么图形?

师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

师:那么你想怎样求这个图形的面积呢?

学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

小组活动:请同学们利用自己手上的题纸,分一分,算一算。

师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

师:根据不同的方法,请学生给这些方法分一分类。

师:板书:分割法和添补法。

师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

师:说说你喜欢那种方法?为什么?

师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

三、习题设计:

1.出示图形进行练习

试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

(1)这张硬纸板还剩下多大的面积?

(2)有一面墙,粉刷这面墙每平方米需用千克涂料,一共要用多少千克涂料?

(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

四、小结。

师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

数学组合图形的面积教案【第二篇】

教学内容:

教材第68—69页含有圆的组合图形的面积。

教学目标:

1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

2、通过自主合作,培养学生独立思考、合作探究的意识。

3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

教学重难点:

组合图形的认识及面积计算、图形分析。

教具学具准备:

多媒体课件、各种基本图形纸片。

教学设计:

⊙创设情境,认识圆环

1.师:我们来欣赏一组美丽的图片。课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

2.同学们,你们从图中发现了什么?(它们都是环形的)

3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

⊙探索交流,解决问题

1.画一画,剪一剪,发现环形特点。

(1)画一画。

让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

(学生按照要求画圆)

(2)剪一剪。

指导学生先剪下所画的大圆,再剪下所画的小圆。

问:剩下的部分是什么图形?(环形)

师:我们也称它为圆环。

(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

生明确:圆环是从外圆中去掉一个内圆得到的。

(4)借助图示认识圆环的各部分名称。

你知道圆环各部分的名称吗?

①外圆:又名大圆,它的半径用R表示。

②内圆:又名小圆,它的半径用r表示。

③环宽:指外圆半径和内圆半径相差的宽度。

2.探究圆环面积的计算方法。

(1)小组讨论,怎样求圆环的面积?

(2)汇报讨论结果。

(3)小结:环形的面积=外圆面积-内圆面积。

设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

3.课件出示例2。

光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

(1)学生读题。

观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

(2)学生试做,指生板演。

(3)交流算法,学生将列式板书:

解法一

外圆的面积:πR2=×62

=×36

=113。04(cm2)

内圆的面积:πr2=×22

=×4

=12。56(cm2)

圆环的面积:πR2-πr2=113。04-12。56

=100。48(cm2)

解法二

π×(R2-r2)=×(62-22)=100。48(cm2)

答:圆环的面积是100。48cm2。

(4)比较两种算法的不同。

(5)小结:圆环的面积计算公式:S=πR2-πr2或

S=π×(R2-r2)(板书公式)

(6)讨论。

知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

①知道内、外圆的面积,可以计算圆环的面积。

S环=S外圆-S内圆

②知道内、外圆的半径,可以计算圆环的面积。

S环=πR2-πr2或S环=π×(R2-r2)

③知道内、外圆的'直径,可以计算圆环的面积。

④知道内、外圆的周长,也可以计算圆环的面积。

S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

S环=π×[(r+环宽)2-r2]

或S环=π×[R2-(R-环宽)2]

设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

⊙巩固练习,拓展提高

1.完成教材68页1题。

学生独立完成,然后在班内说一说解题思路。

2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

3.已知阴影部分的面积是75cm2,求圆环的面积。

[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=×75=235。5(cm2)]

设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

⊙反思体验,总结提高

这节课我们学习了什么?你有哪些收获?还有什么问题?

⊙布置作业,巩固应用

1.完成教材72页8题。

2.找一些关于环形的资料读一读。

板书设计

圆环的面积

圆环面积=外圆面积-内圆面积

S环=πR2-πr2或S环=π×(R2-r2)

《组合图形面积》教案【第三篇】

第五单元组合图形面积

1. 组合图形面积

教学内容:组合图形面积

教材第75页的内容

教学目标: 1.在自主探索的活动中,理解计算组合图形面积的多种方法。

2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点: 能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具学具:多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

教学方法:先学后教,当堂训练

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、在拼图活动中认识组合图

1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

1、教师出示图形

学生拿出课前准备的图形,进行拼图操作活动。

学生拼出各种各样的图形,选出贴在黑板上。

指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

学生观察老师出示的图形,这幅图形象一张客厅的平面图。

学生讨论怎样算买多少平方米的地板?

通过这一操作活动,使学生从中体会到组合图形的组成特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

2、提出问题

你们知道应该买多少平方米的地板吗?

只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

学生介绍自己探索中采用的分割方法。

学生分别按照黑板上的方法计算主客厅的地板的面积。

学生发独立观察图并且解决问题,然后,集体汇报、订正。

面积的基本方法。从中体会到组合图形的特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

从中体会到组合图形的特点。

板书设计:

五、图形的面积

组合图形面积

2.成长的脚印

教学内容:成长的脚印

教材第77、78页的内容

教学目标:1、 能正确估计不规则图形面积的大小。

2、能用数格子的方法,计算不规则图形的面积。

3、培养学生的空间观念,提高学生解决实际问题能力

教学重点: 用数格子的方法,计算不规则图形的面积。

教学难点:估计不规则图形的面积。

教具学具:多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

教学方法:课件演示,动手操作

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、创设情境,进行探索

1、同学们想一想,自己小时的脚印与现在的脚印有什么变化?

2、出示挂图

(1)板书:小华出生时,脚印的面积约是多少?(每小格是1cm2)

让学生数格子,先估计,再数格子,说一说怎样数格子。

(2)小华2岁时,脚印的面积约是多少?

约是46 cm2

学生回忆自己小时候的脚印,随着年龄的增长,脚印越来越大,学生仔细观察图想,怎样才能得到小华出生时脚印的面积约是多少?

数格子,估计面积的大小。

通过情境,联系自己引出新知,使学生对数学产生浓厚的兴趣。

让学生掌握估计,计算不规则图形的面积,培养学生空间观念的一个方面。

2、估计小华11岁的脚印面积的大小,并能用自己的脚印进行验证。

3、讨论估计小华两个年龄段脚印面积的大小。

脚印面积的大小与年龄的增长有着密切的关系。

二、布置练习

小组合作用自己的脚印验证一下这节课的结论。 在小组内说一说自己是怎样数格子算出小华脚印面积的大小。

学生将课前准

备好的自己脚印图拿出来数一数格子,约是多少面积。

学生想办法寻找验证的方法:还可以是把脚印看作长方形来计算,(近似的基本图形)

学生小组合作进行练习和测量,说说脚印在成长的过程中有什么规律。 通过两个年龄段脚印大小的估计,使学生明确脚印面积的大小与年龄的增长有着密切的关系。

让学生借助方格子这一载体来进行估计与计算。

随着年龄的增长脚的生长速度回放慢。

板书设计:探索活动——成长的脚印

(1)小华出生时,脚印的面积约是多少?(每个方格是1cm2)

(2)小华2岁时,脚印的面积约是多少?

(3)现在11岁,用自己的脚印估计约是多少?

教后反思:

3.尝试与猜测(一)

教学内容:

鸡兔同笼

教材第80页的内容

教学目标:

1. 通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2.通过列表举例、作图分析等方法,解决问题

3.培养学生分析问题的能力,渗透假设的数学设想。

教学重点: 通过观察前后图形中点的变化规律,推理得出后续图形中点的数量

教学难点:从不同角度分析,掌握解题的策略与方法。

教具学具:多媒体课件和题卡。

教学方法:观察、讨论,小组合作。

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、创设情境、揭示课题

1、鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

2、从有1只鸡开始一个一个地试,把试的结果列成表格。

头/个 鸡/只 兔/只 腿/只

20 1 19 78

20 2 18 76

20 3 17 74

… … … …

20 13 7 54

3、根据鸡与兔共有20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条,腿多少?

4、先估计鸡与兔数量的可能范围,以减少举例的次数,再列出表格。 学生根据图上信息,独立思考,再与同学进行交流。

学生交流时:从1只鸡开始一个一个地试,把试的结果列成表格。

学生小组内将表格进行分析。

然后,学生比较后,再列第二张表格,减少举例的次数。

让学生采用取中例举的方法列表格。 在“鸡兔同笼”的活动中,通过列表举例,制图分析等方法,解决鸡与兔的数量问题。

在这样的逐一例举中,直至找到所求的答案。

能减少举例的次数

这样可以大大缩小举例的范围。

5、采用举取中例举的方法,由于鸡与兔共有20只,所以,各取1只,接着在举例中根据实际的数据情况确定举例的方向。再列表格。

6、画图的方法

先画出20个圆圈,代表20个头,接着假设全部是鸡,共画40条腿,剩余的14条腿,只要逐一添上就行了。

二、练习巩固

1、数据稍变化,再画图方法完成。

2、解决练一练,2、3、4题,用最快的方法解决。 说一说这样有什么好处。

让学生动手画图,用画圆圈代表20个头,看谁画的快,然后说一说自己的想法。

学生做练习,完成练一练1—4题先独立解决,然后小组交流,

最后全班交流。 这是比较形象的一种方法,适合小学生理解,能很快发现鸡与兔的数量。

指导学生开展练习,可采用举例的方法,画图的方法。

板书设计:          尝试与猜测

鸡兔同笼,有20个头,54条腿,鸡,兔各多少只?

列表1、(略)

2、(略)

教学反思:

3.尝试与猜测(二)

教学内容:

点阵中的规律

教材第82、83页的内容

教学目标:

1. 通过观察前后图形中点的变化情况,从而推导出后续图形点的数量;帮助学生建立数学模型。

2*山草香 *.在活动中培养分析、推理的思维能力。

教学重点: 是引导学生发现与概括规律

教学难点:总结概括规律。

教具学具:多媒体课件和题卡、正方形纸片。

教学方法:观察、讨论,小组合作。

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、指导学生观察所提供图形的基本形状。

1、提供的四个图形的均是三角形,第一个图形除外。

板书:1点字的个数是如何增加的?

2、观察四个图形均是正方形(第一个除外)你能写出算式吗?

1×1 2×2  3×3  4×4

□×□……

3、第三、四组的四个图形请示去自己去探索,发现规律。

二、指导学生观察前后图 学生观察提供的第一组点字图,交流点字的个数是如何增加的,然后用算式表示出来。

学生观察第二组四个图形,点字的个数有什么变化,在小组内说一说,然后用算式表示出来。

学生独立观察思考这两组图形点不变化的情况,有什么规律。 引导学生观察所给图形的基本形状及点字变化情况。

学生通过观察前后图形中点的变化情况,从而推导出后续图形点的数量。

引导学生观察前后图形点的个数是如何增加的。

形点的个数是如何增加的。

1、点字图是三角形的点字个数后一层比前一层多。

2、正文形、长方形点子数是成倍增加。

3、第(4)组图点子数是怎样变化的。

三、指导学生观察前后的算式。

仅观察图形并不能直接发现规律,并与图形对应起来。

四、练习巩固。

第1题,有两小题都是根据图形的变化的特点,推理出后续的图形。

第二题,是观察图形排列的变化

学生先独立思考:各图形点子个数是如何增加的,然后小组内交流,最后全班进行交流。

学生补充完算式,找出规律再写出一个算式来。

先让学生独立思考,然后组织学生进行交流。

通过这样的观察,也能知道后面图形排列的特点,从而计算出后面图形点的数量。

根据图形变化发现这一变化规律。

板书设计:          点阵中的规律

教学反思:

《组合图形的面积》教案【第四篇】

教学背景:

组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。

本节微课主要学习割补法、等积变形、旋转法等三种方法。

教学目标 :

1、 知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、 注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

教学方法:

讲解法、演示法

教学过程:

一 、割补法

这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

Ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的条件或问题替换成面积相等的'另外的条件或问题,使原来复杂的图形变为简单明了的图形。

Ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

Ppt演示变化过程,并出示解题过程。

四、小结方法

求组合图形面积可按以下步骤进行

1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

22 2605978
");