《平行线的性质》教案【汇编14篇】
通过平行线的定义及性质,探讨其与角度、三角形的关系,帮助学生理解几何基础知识,如何应用这些性质解决问题呢?以下是网友为大家整理分享的“《平行线的性质》教案”相关范文,供您参考学习!
《平行线的性质》优秀教案 篇1
1、教材分析
(1)知识结构
平行线的性质:,全国公务员共同天地
(2)重点、难点分析
本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“”、“”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.
本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.
2、教法建议
由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.
(1)讲授新课
首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“”、“”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.
(2)综合应用
理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点.老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.
(3)适当总结
几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的题目,能做到想得明白,写得清楚,书写逐渐规范.
教学目标
1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.
2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.
3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.
教学重点:平行线性质的研究和发现过程是本节课的重点.
教学难点(:正确区分平行线的性质和判定是本节课的难点.
教学方法:开放式
教学过程
一、复习
1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?
2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。
如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。
二、新课
1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?
上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。
2、现在我们来用这个性质公理,来证明另两句话的正确性。
想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?,全国公务员共同天地
已知:如图,直线a∥b
求证:(1)∠1=∠4;(2)∠1+∠2=180°
证明:a∥b(已知)
∠1=∠3(两直线平行,同位角相等)
又∠3=∠4(对顶角相等)
∠1=∠4
(2)a∥b(已知)
∠1=∠3(两直线平行,同位角相等)
又∠2+∠3=180°(邻补角的定义)
∠1+∠2=180°
思考:如何用(1)来证明(2)?
例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠D=100°,梯形另外两个角各是多少度?
解:梯形上下底互相平行
∠A与∠B互补,∠D与∠C互补
∠B=180°-115°=65°
∠C-180°-100°=80°
答:梯形的另外两个角分别是65,80°
练习:P791、2、3
小结:平行性质与判定的区别
《平行线的性质》优秀教案 篇2
教学目标:
1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。
2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。
3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
重点:理解并应用平行线的性质。
难点:探究平行线的性质。
一、复习回顾、引入新课
问题:我们学过判定两条直线平行的方法有哪些?
如果将判定方法中的结论做为条件,是否能够得到判定方法中的已知。
二、合作交流、探索新知
问题1:在自己的横格作业本上选择任意两条线作为平行线,再用铅笔任意画一条这组平行线的截线,选择其中一组同位角,猜想它们的关系如何?验证你的猜想。
问题2:同问题1,选择一组内错角,猜想两个角在数量上有什么关系?除了可以用测量的方法,能否给出理论证明?
问题3:根据问题1、2,你能说出两条平行线被第三条直线所截,同旁内角有什么关系吗?能否给出理论证明?
归纳新知:平行线性质定理:
(1)两条平行线被第三条直线所截,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
简单的说成:
(1)
(2)
(3)
问题4:如图,直线a、b被直线c所截,在括号内为下面各小题填空:
(1)性质1: a 1
a//b ∠1=∠243
(两直线平行,同位角相等) b2
(2)性质2:
a//b ∠ =∠
(两直线平行,内错角相等)
(3)性质3:
a//b ∠ +∠=()
三、拓展应用:
例1:如图是一块梯形铁片的残余部分,量得
∠A=100°,∠B=115°,梯形另外两个角分别是多少度?(图见课本)
练习1、如图,直线a//b,∠1=54°,那么∠2,∠3,∠4各是多少度?
练习2、如图,∠ADE=
∠ABC,若∠AED=42°,
则∠B=_____,∠C=_______.
四、本课小结,作业布置:
《平行线的性质》优秀教案 篇3
1案例呈现
评注案例1源自某地高三质检题.案例1以平面向量为载体,考查圆、椭圆及最值、范围等相关知识,同时凸显数形结合、转化与化归等思想,是一道集知识、能力、方法与思想于一体的综合性较强的试题.鉴于此,我校高三备课组决定将案例1作为周末作业题.
2解答过程
3遭遇质疑
周一讲评时,学生陈汜玄提出质疑,认为上述解答过程与结论都存在错误,这让笔者大吃一惊!仔细审视上述整个解答过程与结论,似乎每一步都是严谨、规范的.刚好下课,笔者带着满腹疑惑回到办公室,并将这一“突发事件”立即报告同行,请求大家一起研究.
4错在哪儿
熟知结论
让我们先看以下熟悉的试题(以下简称案例2):
注意到案例2与案例3中的A,B,表面上看,点A,B是椭圆长轴两个端点,其本质则是点A,B关于原点(椭圆中心)对称,因此我们进一步推广得到(以下简称案例4):
评注上述案例2、案例3及案例4的证明较为简单,请读者自行推理.案例2、案例3及案例4充分说明这样一个事实:一旦椭圆确定,则椭圆上任一点与椭圆上关于其中心对称的两点连线的斜率(假设斜率存在)之积为定值.
重温教材
对于教学中遇到的问题,尤其是棘手的疑难问题,最先自救的是重温教科书.俗话说得好,“解铃还须系铃人.”教科书是离我们最近、与我们最熟悉、跟我们最密切的规范性文本.
相信大家一定记得人教版教科书(文[1])第二章“圆锥曲线与方程”第二节“椭圆”中例3(第41页),原题如下(以下简称案例5):
评注文[1]主编特意将案例5与案例6中的坐标设置相同,意在凸显案例5与案例6是从特殊到一般、从椭圆到双曲线、焦点从x轴到y轴,这既是作为本章总复习的综合考查,又是渗透数形结合、分类讨论等系列数学思想的绝佳时机.同时主编暗藏玄机:案例5求轨迹方程,而案例6则是求轨迹,也就是说,案例6不仅要求出方程(代数),更要指出其轨迹(图形).
疑点浮现
对照上述案例1与案例2、案例3及案例4,可以猜测命题专家当初就是依据上述案例2、案例3及案例4而命制上述案例1.应该说案例1回归教材,以教材为本,确实是一道难得的好题.审视案例5与案例6,不难发现上述解答就是仿照案例5、案例6的两点坐标而构建坐标系.按理说,上述解答过程中的建立平面直角坐标系也是中规中矩,况且平时都是这样建立坐标系.上述案例1的解答步骤似乎规范、严谨,那问题到底出在哪儿呢?是上述解答错误?还是案例1本身有问题呢?
定值的本质到底是什么?
上述案例2、案例3及案例4说明:只要椭圆确定,则椭圆上任一点与椭圆上关于中心对称的两点连线的斜率(假设斜率存在)之积为定值.那反过来,若斜率之积为定值,椭圆能唯一确定吗?这才是问题关键所在,这正是学生质疑的地方.
学生质疑的依据是什么?
为何案例5所得到的椭圆是唯一确定,而案例1中的椭圆不是唯一呢?请读者仔细对照上述案例1与案例5中细微差异.对于案例5,主编已经确定点A,B的坐标,而案例1中命题专家并没有确定点A,B的坐标,只是给出线段AB的长度而已.由于我们习惯性地“以线段AB所在直线为x轴,以线段AB中垂线为y轴”,并由此而得到点A,B的坐标,即“A(-2,0),B(2,0).”这样我们人为地将线段AB默认为椭圆的长轴(如图5所示).
殊不知,上述案例4有力地表明:线段AB不一定必须作为椭圆的长轴,其实只要将线段AB作为椭圆的任意一条中心弦(如图6所示)都可以满足斜率之积为定值.将线段AB默认为椭圆长轴(如图5所示)是最小的椭圆,将线段AB默认为椭圆短轴(如图7所示)是最大的椭圆.当然,不论椭圆多大、多小,只要其斜率之积为确定定值,那么离心率e始终保持不变,这就是“相似椭圆”的由来,这正是学生产生质疑的原因所在,这也正是专家当初命制案例1时所没有考虑到的盲区!图5图6图7说到底,案例2与案例3的逆命题并不成立,换言之,kPA・kPB为定值,此时AB并非就是椭圆的长轴,可能为过椭圆中心任一条弦,更何况,由上述案例6可知其轨迹还不一定就是椭圆,可能为圆或双曲线.
“相似椭圆”如何变化?
由上述分析不难得到,尽管斜率之积为定值,但并不能保证椭圆能够唯一确定,而是得到系列“相似椭圆”.那满足条件的“相似椭圆”不断变化时,其|PQ|又是如何变化呢?
其二、上述图8、图9到图10有力地说明前面解答中“以线段AB所在直线为x轴,以线段AB中垂线为y轴,建立平面直角坐标系,则A(-2,0),B(2,0),”是不恰当的,因为这样构建直角坐标系,就等于默认了线段AB只能作为椭圆的长轴,从而只能得到其中最特殊的一种情况,即最小的椭圆,也就是图8.
实践是检验真理的唯一标准!至此,我们完全可以得出这样的结论:备课组给出的解答过程及答案都是错误的,当然也说明命题专家给出的答案也是错误的.遗憾的是,因笔者功底浅薄,至今还有一些疑惑,在此借贵刊平台,向各位同行请教.比如,案例1本身是否正确?如果案例1正确,那么|PQ|的取值范围到底是什么?如果案例1本身存在瑕疵,瑕疵在哪儿?又该如何修复?以后命制此类相关试题时如何避免犯同样的错误?
5研究教材
教材是专家依据《高中数学课程标准》和学生认知结构编写的教学用书,是课程目标和教学内容的具体体现.教材是经过无数次去粗存精与高度浓缩编写而成的,教材是教师教学的蓝本和依据.正因为教材的特殊地位与作用,教材本身就是专家命制试题的依据与源泉.
命题不仅是一件消耗体力、需要耐力的繁重劳动,更是一种面对危机、充满挑战的智慧结晶.命题之所以出现错误,其原因是多方面的,其中最典型、也是最隐蔽的错误就是自以为对教材熟悉.无论是命}专家给出的参考答案还是上述解答过程,其错误根源都是没有吃透教材.比如上述“以线段AB所在直线为x轴,以线段AB中垂线为y轴”,这就等于默认“以AB作为长轴的椭圆”,这就是没有吃透教材习题(上述案例5与案例6)而导致!
《平行线的性质》优秀教案 篇4
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的’性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、1、合作学习:
如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2、你发现平行线还有哪些性质?
平行线的性质:
CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
3、做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2=()∠3=-∠1=()
4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5、练一练:(P、14课内练习
1、2)
6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。
∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)
∵BD平分∠ABC(已知)
∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)
7、练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。
三、拓展
12a34bD图1-15Ccd
1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由
2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C
ABA图1 B FECD
四、知识整理:
1、平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等
3、要注意一题多解
五、布置作业
P、15作业题及作业本
《平行线的性质》优秀教案 篇5
1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
【教学重点】
平行线的性质以及应用.
【教学难点】
平行线的性质公理与判定公理的区别.
【对话设计】
〖探索1〗反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.
现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?
再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2〗
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想.
〖推理举例〗
如果把平行线性质1—“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:”两直线平行,内错角相等”.
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1=∠2.
证明:a∥b,
∠1=∠3(__________________).
∠3=∠2(对顶角相等),
∠1=∠2(等量代换).
〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1+∠2=180?.
证明:
〖探索4〗
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?根据和(1)一样吗?
〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:
(1)a∥b,∠1=∠3(___________________);
(2)∠1=∠3,a∥b(_________________).
(3)a∥b,∠1=∠2(__________________);
(4)a∥b,∠1+∠4=180?
(_____________________________________)
(5)∠1=∠2,a∥b(___________________);
(6)∠1+∠4=180?,a∥b(_______________).
〖练习2〗
画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由.
《平行线的性质》优秀教案 篇6
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、 教学过程
问题与情境
师生互动
设计意图
活动1
你身边的问题
问题:
如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解,
教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,
2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的`积极性,提高了学生的兴起,
活动2:
探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系,
关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3:
运用与推理
问题:
你能根据性质1,说出性质2,性质3成立的理由吗?如图,
因为a∥b。 所以∠1=∠2(_______)
又∠3=∠_____,(对顶角相等)
所以∠2=∠3,
类似地,对于性质3,你能说出道理吗?
想一想:这节课开始的那个问题应该如何解决?
学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4
巩固与提高
问题1:如图直线a,b被直线c所截 ,
1、 如果a∥b ,∠1=60°,那么∠2,,∠3,∠4为多少度。为什么?
2、 如果∠1=60°,∠3=120°,直线a、b有什么关系?为什么?
问题2:∠1=100°,∠5=100°,∠2=60°,那么∠4、∠3为多少度?
解:因为∠1=100°,∠5=100°
所以∠1=∠____ ( )
所以 _____∥_______ ( ),
又因为 ∠2 =60° ( )
所以 ∠4=∠______=______( )
又因为 ∠4与∠3________ ( )
所以 ∠3=180°―_____=______°
问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
(1)因为∠1=∠ABC,
所以 AD∥_____ ( )
(2) 因为 ∠3=∠5
所以 AB∥_____ ( )
(3)因为∠2=∠4
所以 ______∥______ ( )
(4)因为∠1=∠ADC
所以______∥______ ( )
(5) 因为∠ABC+∠BCD=180
所以 _______∥______ ( )
问题4,学与用:
某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100°,为了便于连接,那么另一侧应以什么角度铺设?为什么?
小结:
布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、 几何推理证明的要领。
3、 正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力。
《平行线的性质》优秀教案 篇7
一、教学内容
“平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。
因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。
在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。
二、教学目标
基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:
1、让学生通过直观认识,掌握平行线的判定方法;
2、会根据判定方法进行简单的推理并能写出简单的说理过程;
3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。
同时确定本节课的重难点:
重点:在观察实验的基础上进行判定方法的概括与推导。
难点:方法的归纳、提炼;
三、教学方法及手段
布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循“教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法、让学生合作、探究,主动发现。
教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。
四、教学过程
1、复习旧知,承前启后
如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系。
此问题旨在复习原来的知识,从而为新知识作好铺垫。
2、创设情境、合作探究
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。
问题:如何判断一条纸带的边沿是否平行?
要求:
1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);
2、对工具使用不做限制。
对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。
最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。
⑴、推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;
其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。
⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;
而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。
⑶折的方法。
经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:
内错角相等,两条直线平行。
同旁内角互补,两直线平行。
其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。
3、初步应用,熟悉新知
“学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。
找一找,说一说:
1、课本练习:如图,直线a,b被直线l所截,
⑴若∠1=750,∠2=750,则a与b平行吗根据什么
⑵若∠2=750,∠3=1050,则a与b平行吗根据什么
2、根据下列条件,找出图中的平行线,并说明理由:
图(1)∠1=1210,∠2=1200,∠3=1200;
图(2)∠1=1200,∠2=600,∠3=620。
对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。
例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行并说明理由。
确定例题是难点,基于以下两点考虑:
1、根据已有的条件与图形,无法解决问题时,要添加辅助线。
2、将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。
因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。
4、练习反馈,巩固新知。
说一说,写一写:
1、如图,∠1=∠2=∠3。填空:
⑴∵∠1=∠2()
∴∥()
⑵∵∠2=∠3()
∴∥()
2、如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。
练习的安排遵循了由浅入深的原则,让学生在观察后再动手。
说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。
因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的’学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。
《平行线的性质》优秀教案 篇8
教学目标
(一)知识技能
经历探索平行线的性质的过程,初步掌握平行线的性质
(二)过程与方法
通过观察、操作、推理、交流等活动,进一步发展学生的空间观念结合推理能力。
(三)情感、态度、价值观
在学习过程中皮衣学生的唯物主义观点,使学生逐步养成言之有理的习惯。
教学重点
1、平行线性质的探索和对性质的理解
2、应用性质解决实际问题
教学难点
有条理地写出推理的过程。
课前准备:
预习课本
教具准备:
直尺、三角板
教法:
引导、探究、
学法:
研讨、探究
教学进程
情景导入
(一)动手操作:
(1)利用一块三角板和一把画两条互相平行的直线a、b;
(2)画直线c使它与直线a、b均相交;
(3)写出一组同位角、一组内错角、一组同旁内角,并用量角器量出它们的度数;
(4)观察各组角度数的关系,你可以得到怎样的结论?
(二)交流、探究
观察发现,得出结论:
两直线平行,同位角相等。
两直线平行、内错角相等。
两直线平行、同旁内角互补。
请你根据“两直线平行,同位角相等。”
说明成立的理由。
因为a∥b,
所以∠1=∠2
又因为∠1与∠3是对顶角
∠1=∠3
所以∠2=∠3
类似地、请根据“两直线平行、同位角相等。”说明“两直线平行、同旁内角互补”成立的理由,并与同学们交流。
学生画图板演
小组讨论合作学习
(三)应用、提高
AD∥BC,∠A=∠C,试说明AB∥DC
解:因为AD∥BC
所以∠C=∠CDE
又因为∠A=∠C
所以∠A=∠CDE
根据“同位角相等两直线平行”
可以知道AB∥DC
练一练:
a∥b∠1=55、∠2=68,求∠3、∠4、∠5的度数
(四)总结升华
老师画了一个△ABC,他问同学们∠A+∠B+∠C等于多少度?你能有几种方法得到结论、画图并简述你的理由。
(五)布置作业:P23、(3、4、5)
教学反思
这节课我是这样处理的
1、系生活实际,创设问题情境。
2、组织合作交流,营造探究氛围。使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。
3、尊学生需要,关注学习过程。,更是放手让学生大胆去作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。
4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。
课后反思:这节课存在的问题:
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范。
《平行线的性质》优秀教案 篇9
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:平行线的性质。
教学难点:平行线的性质定理与判定定理的区别。
教学模式:发现教学模式。
教学方法:直观教学法、发现教学法、主体互动法。
教学手段:计算机辅助教学。
教学过程:
教学环节教师活动
学生活动教学意图复习提问
复习提问:判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课
【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
【提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
【大屏幕】平行线的性质:定理1.两条平行线被第三条直线所截,同位角相等。简言之:两直线平行,同位角相等。
定理2.两条平行线被第三条直线所截,内错角相等。简言之:两直线平行,内错角相等。
定理3.两条平行线被第三条直线所截,同旁内角互补。简言之:两直线平行,同旁内角互补。
【提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆
思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题”与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
【大屏幕】符号语言:(不唯一)
性质定理1.∵l1∥l2∴∠1=∠5(两直线平行,同位角相等)
性质定理1.∵l1∥l2∴∠3=∠5(两直线平行,内错角相等)
性质定理1.∵l1∥l2
∴∠3+∠6=180o(两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
【大屏幕】规范定理的推导过程。
思考、尝试回答
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示
范【大屏幕】例:如图是一块梯形铁片的.残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
关于《平行线的性质》优秀教案汇总的内容就收集整理到这里了,希望可以对有需要的朋友们提供一些帮助,大家可以结合实际情况来参考以上范文,以此来帮助自己顺利展开书写工作。如果这期内容对大家有所帮助,也请大家多关注本站。
《平行线的性质》优秀教案 篇10
【教学目标】
1、经历平行线的性质:两直线平行,同位角相等的发现过程。
2、掌握平行线的性质:两直线平行,同位角相等。
3、会用两直线平行,同位角相等进行简单的推理和判断,并学会表达。
【教学重点】平行线的性质:两直线平行,同位角相等。
【教学难点】例2的推理过程要用到平行线的判定和性质。
【教学预设】
【活动1】复习引入
1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)
条件 结论
同位角相等, 两直线平行。
内错角相等, 两直线平行。
同旁内角互补, 两直线平行。
2、练习:
(1) 如图①,A、B、C三点在一条直线上。
如果3 =6,那么 ∥ 。( )
如果6 =9,那么 ∥ 。( )
如果1 +2 +3 =180,那么 ∥ 。( )
如果 ,那么BE∥CD。( )
(2) 如图②,看图填空:
∵1 =2(已知)
∥ 。( )
又∵2 =3(已知)
∥ 。( )
【活动2】
1、 引入新课的课堂练习:
(1)你们练习本上的横线与横线成什么关系?(平行)
(2)请画出其中二条(二条之间可空若干行),分别用a、b 表示,a∥b,再画一条c分别与a、b相交。
(3)标出一对同位角,用1、2表示,并量一下度数。
(4)1与2有何关系?(2)
在这个练习中,两直线平行是给出的条件,而得到的结论是什么?
学生回答
这就是平行线的一个重要性质:两条平行直线被第三条直线所截,同位角相等。
简单地说成:两直线平行,同位角相等。
【活动3】知识应用:
例1、 如图,梯子的各条横档互相平行,1=1000,求2的度数。
此题比较简单,让学生自己分析,个别同学发表自己的分析过程,后学生书写过程。强调过程的’书写。
例2、 如图,已知2。若直线bm,则直线am。请说明理由。
这是一道平行线的判定和性质综合的题目,引导学生用逆向推理的方法来分析。
3、 课内练习
给学生10分钟的时间让他们自行完成,然后校对
强调说明过程的书写规范
机动:作业题4
【活动4】小结
请同学们回答平行线的两个性质,指出其中的条件与结论。
【活动5】布置作业
见作业本
《平行线的性质》优秀教案 篇11
一、教材分析:
1.地位与作用:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
2.在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截同位角相等内错角相等同旁内角互补可以判定两条直线平行,那么两条平行线被第三条直线所截同位角内错角同旁内角之间会有什么关系呢学生有进一步探究的愿望和能力。
二、教学目标的确定:
根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
(1)探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。
(2)通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
(3)通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
三、教学重点、难点分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定
本节课的重点为:探究平行线的性质.
由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定
本节课的难点为:明确平行线的性质和判定的区别
四、教法与学法
1.教法:采用引导发现法,教师通过精心设置的一个个问题链,激发学生的求知欲,使学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。引导学生观察动手测量,猜想小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.
2.学法:在教师的引导下,学生通过观察、动手测量、猜想、小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
五、教学过程设计
本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.
〈一〉创设情境激发兴趣
出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶拐弯后上公路c又同向行驶。
(1)如果公路c与公路a的交角为700那么公路c与公路b的交角是多少度呢?
(2)如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?
设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
〈二〉探究新知实验猜想
问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?
学生首先独立完成
问题1 ,鼓励学生运用多种方法进行探索,在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.
设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?
学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:
(1)用量角器进行度量;
(2)通过剪纸拼图进行比较.
鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.
问题3:试将你发现的结论用自己的语言叙述出来。
设计意图:探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—独立思考—合作交流—得出猜想的探究过程,突出重点.锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
〈三〉归纳性质说理证明
1.平行线的性质
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
设计意图:在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.
2.试一试用符号语言表达上述三个性质.
学生独立思考回答,教师组织学生互相补充,并出示准确形式.
如图
性质1.∵ a∥b(已知),
∴∠1=∠2.(两直线平行,同位角相等)
性质2.∵ a∥b,(已知)
∴ ∠2=∠3(两直线平行,内错角相等).
性质3.∵ a∥b(已知),
∴ ∠5+∠6=180o.(两直线平行,同旁内角互补)
设计意图:帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.
问题4.你能根据平行线的性质1说出性质2、3成立的道理吗?
例如:如图,
∵ a∥b,
∴ ∠1=∠2.
又∵ ∠3= ,(对顶角相等)
∴ ∠2=∠3.
类似的,对于性质3请写出推理过程.
学生观察图,独立思考填空.此处将由性质1推导性质2的过程以填空的形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生独立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.
设计意图:引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作逐步培养学生的推理能力.
4.对比平行线的判定方法和性质,你能说出它们的区别吗?
学生独立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.
设计意图:这是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.
〈四〉应用新知巩固练习
例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
学生思考、尝试运用符号语言进行推理。老师适度点拨,并根据学生的解题情况板书规范的说理过程。
设计意图:应用平行线的性质3来解决问题,巩固平行线的性质,提高学生分析问题解决问题的能力。
课堂练习:
1.如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?
2.如图2,填空:
①∵ ED∥AC(已知)
∴ ∠1=∠C( )
②∵ AB∥DF(已知)
∴ ∠3=∠ ( )
③∵ AC∥ED(已知)
∴ ∠ =∠ (两直线平行,内错角相等)
3.如图3,∠1+∠2=180o,∠3=108o,求∠4的度数.
设计意图:第1题直接利用平行线的性质来计算巩固概念;第2题从不同角度应用性质,强化重点知识的理解;第3题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.
〈五〉归纳小结布置作业
课堂小结:
今天我们学习了平行线的性质:
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
《平行线的性质》优秀教案 篇12
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、 教学过程
问题与情境
师生互动
设计意图
活动1
你身边的问题
问题:
如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解,
教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,
2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起,
活动2:
探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系,
关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的’推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3:
运用与推理
问题:
你能根据性质1,说出性质2,性质3成立的理由吗?如图,
因为a∥b。 所以∠1=∠2(_______)
又∠3=∠_____,(对顶角相等)
所以∠2=∠3,
类似地,对于性质3,你能说出道理吗?
想一想:这节课开始的那个问题应该如何解决?
学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4
巩固与提高
问题1:如图直线a,b被直线c所截 ,
1、 如果a∥b ,∠1=60°,那么∠2,,∠3,∠4为多少度。为什么?
2、 如果∠1=60°,∠3=120°,直线a、b有什么关系?为什么?
问题2:∠1=100°,∠5=100°,∠2=60°,那么∠4、∠3为多少度?
解:因为∠1=100°,∠5=100°
所以∠1=∠____ ( )
所以 _____∥_______ ( ),
又因为 ∠2 =60° ( )
所以 ∠4=∠______=______( )
又因为 ∠4与∠3________ ( )
所以 ∠3=180°―_____=______°
问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
(1)因为∠1=∠ABC,
所以 AD∥_____ ( )
(2) 因为 ∠3=∠5
所以 AB∥_____ ( )
(3)因为∠2=∠4
所以 ______∥______ ( )
(4)因为∠1=∠ADC
所以______∥______ ( )
(5) 因为∠ABC+∠BCD=180
所以 _______∥______ ( )
问题4,学与用:
某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100°,为了便于连接,那么另一侧应以什么角度铺设?为什么?
小结:
布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、 平行线的性质和判定的不同。
2、 几何推理证明的要领。
3、 正确分清推理中因为和所以所表达的意义
《平行线的性质》优秀教案 篇13
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是不等式的三条基本性质。难点是不等式的基本性质3。掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础。
1、不等式的概念
用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式。
另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式。
2、当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式。但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同。因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向。
3、不等式成立与不等式不成立的意义
例如:在不等式中,字母表示未知数。当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立。
4、不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意。
一、素质教育目标
(-)知识教学点
1、了解不等式的意义。
2、理解什么是不等式成立,掌握不等式是否成立的判定方法。
3、能依题意准确迅速地列出相应的不等式。
(二)能力训练点
1、培养学生运用类比方法研究相关内容的能力。
2、训练学生运用所学知识解决实际问题的能力。
(三)德育渗透点
通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。
(四)美育渗透点
通过不等式的学习,渗透具有不等量关系的数学美。
二、学法引导
1、教学方法:观察法、引导发现法、讨论法。
2、学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用。
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式是否成立的判定方法;依题意列出正确的不等式。
(二)难点
依题意列出正确的不等式
(三)疑点
如何把题目中表示不等关系的词语准确地翻译成相应的.数学符号。
(四)解决方法
在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式。
四、课时安排
一课时。
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
1、创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情。
2、从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式。
3、从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力。
七、 教学步骤
(一)明确目标
本节课主要学习依题意正确迅速地列出不等式。
(二)整体感知
通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式。
(三) 教学过程
1、创设情境,复习导入
我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:
(1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?
(2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?
学生活动:首先自己思考,然后指名回答。
教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解。
②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立。
【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备。
2、探索新知,讲授新课
不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?
师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等。
【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣。
在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示。那么什么是不等式呢?请看:
提问:
(1)上述式子中有哪些表示数量关系的符号?
(2)这些符号表示什么关系?
(3)这些符号两侧的代数式可以随意交换位置吗?
(4)什么叫不等式?
学生活动:观察式予,思考并回答问题。
答案:
(1)分别使用“<”“>”“≠”。
(2)表示不等关系。
(3)不可以随意互换位置。
(4)用不等号表示不等关系的式子叫不等式。
不等号除了“<”“>”“≠”之外,还有无其他形式?
学生活动:同桌讨论,尝试得到结论。
教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”。)现在,我们来研究用“>”“<”表示的不等式。
②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成。
【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用。
②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解。
3、尝试反馈,巩固知识
同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题。
(1)用“<”或“>”境空。(抢答)
①4___-6;②-1____0③-8___-3;④-___-4。
(2)用不等式表示:
①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3。
(3)学生独立完成课本第55页例1。
注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明。
学生活动:第(1)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确
教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励。
【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力。
② 教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示。
下面研究什么使不等式成立,请同学们尝试解答习题:
已知数值;-5,,3,0,2,-,;
(1)判断:上述数值哪些使不等式成立?哪些使不成立?
(2)说出几个使不等式成立的的数值;说出几个使不成立的数值。
学生活动:同桌研究讨论,尝试得到答案。
教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数。
师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立。例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立。
【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛。
4。变式训练,培养能力
(1)当取下列数值时,不等式是否成立?
-7,0,,1,,10
(2)①用不等式表示:与3的和小于等于(不大于)6;
②写出使上述不等式成立的几个的数值;
③取何值时,不等式总成立?取何值时不成立?
学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项。
【教法说明】
①使学生进一步了解使不等式成立的未知数的值可以有多个,为讲解不等式的解集做准备。
②强化思维能力和归纳总结能力。
(四)总结、扩展
学生小结,师生共同完善:
本节课的重点内容:
1、掌握不等式是否成立的判断方法;
2、依题意列出正确的不等式。
注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示。例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误。
八、布置作业
(一)必做题:P61? A组1,2,3。
(二)选做题:
1、单项选择
(1)绝对值小于3的非负整数有()
A、1,2B。0,1C。0,1,2D。0,1,3
(2)下列选项中,正确的是()
A、不是负数,则
B、是大于0的数,则
C、不小于-1,则
D、是负数,则
2、依题意列不等式
(1)的3倍与7的差是非正数
(2)与6的和大于9且小于12
(3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________。
【设计说明】
1、再现本节重点,巩固所学知识。
2、有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现。
参考答案
1、<,<,>,>,<,<
2、,6,,11是的解,-10,-7,-4. 5,0,3不是解
(二)1。(1)C(2)D
《平行线的性质》优秀教案 篇14
一、教材分析
教材的地位和作用
《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
教学重难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、教法、学法
教法:
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
学法指导:
通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、教学过程
1、创设情境引入
在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。
前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等、
性质2:两直线平行,内错角相等、
性质3:两直线平行,同旁内角互补、
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识小组交流20页例题
(4)完成导学案上课堂练习
【设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、课堂检测
完成导学案上课堂检测习题
设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。
6、作业设计
P24第4、12题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1:例题:练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
下一篇:返回列表