八年级数学教案【优秀3篇】
本教案旨在通过生动的实例与互动活动,帮助学生理解数学概念,培养逻辑思维与解决问题的能力,如何有效提升学习兴趣呢?以下是阿拉网友分享的“八年级数学教案”,供您学习参考,喜欢就分享给大家吧!
八年级数学教案 篇1
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式。
三、合作学习:
公因式与提公因式法分解因式的概念。
三个矩形的长分别为a、b、c,宽都是m,则这块场地的'面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6;(2)7x2—21x;(3)8a3b2—12ab3c+abc(4)—24x3—12x2+28x、
例2把下列各式分解因式:
(1)a(x—y)+b(y—x);(2)6(m—n)3—12(n—m)2、
(3)a(x—3)+2b(x—3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤。
首先找各项系数的____________________,如8和12的公约数是4、
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的
课堂练习
1、写出下列多项式各项的公因式。
(1)ma+mb 2)4kx—8ky(3)5y3+20y2(4)a2b—2ab2+ab
2、把下列各式分解因式
(1)8x—72(2)a2b—5ab
(3)4m3—6m2(4)a2b—5ab+9b
(5)(p—q)2+(q—p)3(6)3m(x—y)—2(y—x)2
五、小结:
总结出找公因式的一般步骤。:
首先找各项系数的大公约数,其次找各项中含有的相同的字母,相同字母的指数取次数最小的
注意:(a—b)2=(b—a)2
六、作业
1、教科书习题
2、已知2x—y=1/3,xy=2,求2x4y3—x3y4 3、(—2)20xx+(—2)20xx
4、已知a—2b=2,4—5b=6,求3a(a—2b)2—5(2b—a)3
八年级数学教案 篇2
一、素质教育目标
(一)知识教学点
1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2、使学生理解判定定理与性质定理的区别与联系。
3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
(二)能力训练点
1、通过“探索式试明法”开拓学生思路,发展学生思维能力。
2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的'能力。
(三)德育渗透点
通过一题多解激发学生的学习兴趣。
(四)美育渗透点
通过学习,体会几何证明的方法美。
二、学法引导
构造逆命题,分析探索证明,启发讲解。
三、重点·难点·疑点及解决办法
1、教学重点:平行四边形的判定定理1、2、3的应用。
2、教学难点:综合应用判定定理和性质定理。
3、疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)、
八年级数学教案 篇3
教学目标
一、教学知识点:
1、旋转的定义。
2、旋转的基本性质。
二、能力训练要求:
1、通过具体实例认识旋转,理解旋转的基本涵义。
2、探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质。
三、情感与价值观要求
1、经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。
2、通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观。
教学重点:旋转的基本性质。
教学难点:探索旋转的基本性质。
教学方法:
1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。
2、采用多媒体课件辅助教学。
教学过程:
一。巧设情景问题,引入课题
日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)、(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?
1、在这些转动的现象中,它们都是绕着一个点转动的。
2、每个物体的转动都是向同一个方向转动。
3、钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的`位置有所改变。
4、汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。
二。讲授新课
在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)、这个定?注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。
议一议:(课本67页)答:
(1)旋转中心是O点,旋转角是∠AOD、旋转角还可以是∠BOE、
(2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。
(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。
(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。
(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。
看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的性质呢?
答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。
因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。
由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等。对应点到旋转中心的距离相等。
[例1](课本68页例1)
[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。
解:(见课本68页)
书上68页做一做
三.课堂练习
课本P69随堂练习。
1、解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°、
四。课时小结
五。课后作业:课本P69习题1、2、3、
六。活动与探究
1、分析图中的旋转现象。过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律。
结果:旋转现象为:
整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的。
整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的。
整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的。
2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?
过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系。
结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的。
整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°、前后的图形共同组成的。
整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的。
板书设计:略
教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。
上一篇:体育的教案反思大班【汇编13篇】
下一篇:返回列表