数学小学六年级下册教案(优质4篇)
【导言】此例“数学小学六年级下册教案(优质4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
六年级数学下册教案【第一篇】
设计说明
1、注重估算意识和能力的培养。
结合具体情境发展学生的估算意识和《数学课程标准》中强调的能力培养。分数中的估算要比整数、小数的估算难把握一些。因此,在本节课的教学设计中,先让学生结合问题情境独立进行估算,然后进行汇报,交流估算的依据。不仅能利用估算检验解题的正确性,还能借此提高学生的估算意识和能力。
2、重视知识的形成过程。
在教学过程中,结合生活实际创设情境,使学生很快投入到思考和探究的状态。在探究新知的过程中,每个环节都立足以学生为主,通过小组合作、讨论、交流,找到解决问题的方法,渗透数形结合的思想。新旧知识的迁移都为学生创造了有利的条件,起到了抛砖引玉的作用,多种教学方法的使用可以更好地完成这节课的教学目标。
课前准备
教师准备
PPT课件
学生准备
直尺
教学过程
⊙创设情境,引入新课
师:同学们,你们知道世界水日吗?为什么要设立这样一个节日呢?水是我们人类赖以生存的最宝贵的资源,如果我们不珍惜水资源,那么地球上的最后一滴水将是我们人类的眼泪。所以,我们要节约用水,从我做起,从身边的小事做起。这节课我们就一起来研究节约用水中的数学问题。
[板书课题:分数混合运算(三)]
设计意图:数学来源于生活,从节约用水的话题入手,能使学生很快进入学习状态,激发学生的探究欲望。
⊙合作交流,探究新知
1、旧知铺垫。
课件出示:小刚家八月用水14吨,九月比八月节约了,九月用水多少吨?
(引导学生画图分析题中的数量关系,独立解决问题)
2、变更条件,引出问题。
课件出示:小刚家九月用水12吨,九月比八月节约了,八月用水多少吨?
3、组织学生边读题边思考:
(1)估计哪个月用水量多。
(2)你是根据哪句话来判断哪个月用水量多,哪个月用水量少的?
(3)你判断的'关键是什么?
(学生思考后交流问题的答案,同学互评,教师进行适当指导)
4、出示自学指导:
(1)尝试画线段图分析题意,找出等量关系。
(2)选择恰当的方法解决问题。
(3)想一想:你还有其他的解题方法吗?
(学生独立探究解题方法,教师巡视指导)
5、引导学生在小组内交流,梳理自己的解题思路。
6、展示解题过程。
(1)引导学生说出解题思路。学生边画图边说解题思路。
数量关系:八月的用水量-八月用水量的=九月的用水量
八月的用水量×=九月的用水量
(2)指名板演解题过程。
方法一 解:设八月用水x吨。
x-x=12
x=12
x=14
方法二 解:设八月用水x吨。
x=12
x=12
x=14
(3)其他学生提出自己的疑问。
师追问:你们为什么用方程解决问题?用方程解决问题有什么好处?
(学生讨论并汇报)
(4)引导学生对解题结果进行检验。
(学生先独立检验,然后全班交流)
设计意图:学生通过教师的引导进一步理解题意,并结合线段图体会题中的数量关系,建立新旧知识间的联系,积累了解决问题的经验。通过讨论、交流等方式不仅提高了学生合作学习的意识,还提高了学生解决问题的能力。
⊙课堂练习,提升反馈
1、淘气家八月用水14吨,比九月多用了,九月用水多少吨?
(1)试着估算一下哪个月的用水量少,并说出理由。
(2)画线段图,表示题中的数量关系。
(3)解题并检验。
六年级下数学教案【第二篇】
教学内容
运用比解决问题。(教材第54页例2)
教学目标
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
3、掌握按比分配问题的结构特点及解题方法,发展分析、概括能力。
重点难点
重点:理解并掌握按比分配问题的特点和解题方法。
难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
教学过程:
一、复习引入
1、师:比的意义是什么?
引导学生回顾比是什么。
2、一盒糖果有50颗,平均分给甲、乙两人,甲、乙两人各得多少颗糖果?他们所得糖果数的比是多少?(课件出示题目)
点名学生回答,回顾平均分的特点。
3、引出新课。
师:这是一道平均分的。问题,生活中,很多问题运用到了平均分,但有时为了分配合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比分配,就是我们今天要学习的比的应用。(板书课题:比的应用)
二、学习新课
教学教材第54页例2。
(课件出示教材第54页例2)
人教版六年级数学下册教案【第三篇】
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教具准备:
多媒体课件
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
:和:
:和5:2
1/2:1/3 和6 : 4
:和1:4
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:: = 60:40
内项: 6o
外项: 40
(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。
如: : = 60:40
外 内 内 外
项 项 项 项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1) 学生独立探索其中的规律。
(2) 与同学交流你的发现。
(3) 汇报你的发现,全班交流。(师作适当的补充)
在比例里,两个内项的积等于两个外项的积。
板书
两个外项的积是=96
两个内项的积是=96
外项的积等于内项的积。
(4) 举例说明,检验发现。
:=: 1
两个外项的积是 =
两个内项的积是=
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:/ = 60/40
3.440=
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5) 学生归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
4.填一填。
(1)1/2:1/5 =1/4:1/10
( )( )=( )( )
(2):=4:6
( )( )=( )( )
(3)45=210
4:( )=( ):( )
5.做一做。
完成课本中的做一做。
6.课堂小结
(1) 说一说比例的基本性质。
(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)
三、巩固练习
完成课文练习六第4~6题。
补充习题
一题多变化,动脑解决它
(1)在比例里,两个内项的积是18,
★★其中一个外项是2,另一个外项是()。
(2)如果5a=3b,那么, = ,
(3)a︰8=9︰b,那么,ab=( )
教学反思:
比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。
人教版六年级数学下册教案【第四篇】
难点名称
理解本金、利息、利率之间的数量关系,利率和存期一一对应
难点分析
从知识角度分析为什么难
利息=本金×利率×存期,求整年度的利率,只要根据利率表,把整年度的利率和存期一一对应起来,相乘、再乘本金即可求出整年度的利息。但是求半年的利息,学生往往容易出现本金×半年的利息×6。看见根据公式的有问题,学生的利率和存期的关系一一对应起来。
从学生角度分析为什么难
学生对什么是利息,概念抽象、理解困难,六年级学生的心理上一看套公式解决问题,心理的松了,机械的带公式解决问题。学生没有理解半年的年利率的含义,年利率的和存期没有一一对应起来,导致错误。
难点教学方法
1.通过错例对比分析,发现利率和存期是一一对应关系,
2.通过一题多解的方式,学生理解利率和存期一一对应关系
教学过程
一、导入
1.谈话,将多余的钱存入银行即可增加收入,又支援了国家建设。
2.出示存单,介绍利息,思考利息与什么有关系?
二、知识讲解(难点突破)
3.出示利率表,根据利率表解决第一个问题,王奶奶到银行存钱,到期后可以取多少钱?思考问题的同时介绍本金、存期、利息的概念,出示求利息的。计算公式,解决王奶奶本金5000元,存期1年后可取回多少钱的问题。
4.改变存期,本金不变,存期由一年变成两年,两年后王奶奶可取回多少钱?主要考察学生能否把存款的利率和存期一一对应起来,
存款是整年:只要用本金×年利率×存期就能求出相应的利息了。
5.设疑激趣,引发学生思考
改变存期由两年调整到半年,半年后的利率是多少呢?
出示计算方法,5000×%×6=465(元)
发现半年的利息怎么比一年的利息还高呢?问题出在哪里?
6.寻找出错原因
(1)%是半年的利率,6是6个月,6个月是多少年呢?1/2或年,现在计算是多少?
(2)介绍另一种计算方法,突出利率和存期可对应关系,
5000×%÷12×6=(元)
(4)通过两种计算利率的方法,理解利率和存期的对应关系。
存期用多少年表示,就要用年利率;存期用多少月表示,就要用月利率。
三、课堂练习(难点巩固)
7.巩固练习
王奶奶本金不变,存期三个月,到期可得多少利息?(独立完成)
5000×%×?=(元)
5000×%÷12×3=≈(元)
四、小结
8.扩展思考:存款、贷款、理财产品都涉及到利率的问题
上一篇:《让我们荡起双桨》教案精编5篇
下一篇:五年级科学下册教案精编5篇