锐角三角函数人教版数学九年级教案【范例18篇】

网友 分享 时间:

锐角三角函数通过正弦、余弦、正切等定义,帮助学生理解角度与三角形边长关系,培养解题能力与应用意识。以下是阿拉网友为您整理的锐角三角函数人教版数学九年级教案优秀范例,供您学习参考,希望对您有帮助。

锐角三角函数人教版数学九年级教案

锐角三角函数人教版数学九年级教案 篇1

1.理解正多边形的性质.

2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.

教学重点。

教学难点。

对正n边形中泛指“n”的理解.

教学步骤。

一、导入新课。

复习上节内容,导入新课的教学.

二、新课教学。

实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.

1.等分圆周.

锐角三角函数人教版数学九年级教案 篇2

1.在图形旋转中,下列说法错误的是()。

a.图形上的每一点到旋转中心的距离相等。

b.图形上的每一点转动的角度相同。

c.图形上可能存在不动点。

d.图形上任意两点的连线与其对应两点的连线相等。

b、图形上的每一点转动的角度都等于旋转角,正确;。

c、以图形上一点为旋转中心,则这个点不动,正确;。

d、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.

故选a.

锐角三角函数人教版数学九年级教案 篇3

本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。

1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。

2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。

3.加强学生对数学知识的认识方法,培养他们正确的学习方法。

4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。

二.本学期在提高教学质量上采取的措施。

1.改进教学方法,采用启发式教学。

2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

3.注意发展学生探索知识的能力,提高学生分析问题的能力。

4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。

5.鼓励合作学习,加强个别辅导,提高差生成绩。

锐角三角函数人教版数学九年级教案 篇4

证明(二)。

判定定理及相关结论的证明,利用尺规作已知角的平分线。

判定定理及相关结论的证明。

知识点。

1、三角形相关定理。

推论两角及其中一角的对边对应相等的两个三角形全等.(aas)。

定理等腰三角形的两个底角相等.(等边对等角)。

推论等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)。

定理有两个角相等的三角形是等腰三角形.(等角对等边)。

定理有一个角等于60º的等腰三角形是等边三角形.

2、直角三角形。

定理在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.

角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)。

定理直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)。

定理如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.

互逆命题逆命题互逆定理逆定理。

定理斜边和一条直角边对应的两个直角三角形全等.(hl)。

3、线段的垂直平分线直线与射线有垂线,但无垂直平分线。

定理线段垂直平分线上的点到这条线段两个端点的距离相等。

定理到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)。

定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,ao=bo=co)。

cc。

e图1图2。

4、角平分线。

定理角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。)定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)。

定理三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,od=oe=of)。

锐角三角函数人教版数学九年级教案 篇5

1.小数的意义。

预设。

生1:半个可以用来表示,一米半可以用来表示。

生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

2.小数的数位顺序表。

师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

(课件出示数位顺序表,小数部分留白。指名回答,师填充)。

3.小数的读法和写法。

(1)师:怎样读小数?怎样写小数?

预设。

生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。

生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

(2)写小数时需要注意什么?

(空位用“0”补足)。

4.小数的分类。

(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

预设。

生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

(2)谁能举例说明什么是有限小数?什么是无限小数?

预设。

生1:小数部分的位数是有限的小数,叫做有限小数。例如:,,都是有限小数。

生2:小数部分的位数是无限的小数,叫做无限小数。例如:…,…都是无限小数。

(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

预设。

生:无限小数可以分为无限不循环小数和循环小数。

(4)关于无限不循环小数和循环小数,你都了解哪些知识?

预设。

生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

例如:…的循环节是“9”,…的循环节是“54”。

5.小数的性质。

(1)师:谁能说说小数有怎样的性质?

预设。

生:在小数的末尾添上0或者去掉0,小数的大小不变。

(2)理解小数的性质时,应该注意什么?

(提示:要注意是“小数的末尾”,而不是“小数点的后面”)。

6.小数点位置的变化。

锐角三角函数人教版数学九年级教案 篇6

一、教学思想:

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。做到:

1、备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

2、上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。抓住课堂45分钟,严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。精编适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

4、批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

5、按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

6、及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。

三、基本功,提高自身“内力”

积极参加学校组织的各项与教育教学有关的活动。每周至少做一套初三综合试卷。看1篇专业文章,多听课,博采众长,不断提高自身“内力”。积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

四、分层辅导,因材施教。

对本班级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分学困生实行课后辅导,以提高成绩。

五。严格按照教学进度,有序的进行教学工作。

用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。

锐角三角函数人教版数学九年级教案 篇7

教材分析:

本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学'相似三角形''勾股定理'等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:

锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sina、cosa、tana表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时。

教学目标:

知识与技能:

1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算。

3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:

通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

情感态度与价值观:

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

重难点:

1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.

教学过程:

一、复习旧知、引入新课。

【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)。

小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?

下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦。

二、探索新知、分类应用。

【活动一】问题的引入。

锐角三角函数人教版数学九年级教案 篇8

二、基本练习。

1、填空。

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()。

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()。

(3)圆锥的底面周长是分米,高是4分米,它的体积是(×4×1/3)立方分米。()。

三、综合应用。

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思。

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

锐角三角函数人教版数学九年级教案 篇9

一、选择题(本大题共9小题,共分)。

1.下列四组图形中,一定相似的图形是。

a.各有一个角是的两个等腰三角形。

b.有两边之比都等于2:3的两个三角形。

c.各有一个角是的两个等腰三角形。

d.各有一个角是直角的两个三角形。

2.下列说法正确的是。

a.矩形都是相似图形。

b.各角对应相等的两个五边形相似。

c.等边三角形都是相似三角形。

d.各边对应成比例的两个六边形相似。

锐角三角函数人教版数学九年级教案 篇10

八年级新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:

一、学情分析。

本学期我继续担任初二的数学教学工作。这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。

二、教学措施。

3、仔细批改作业,作好辅导,及时查缺补漏。

4、成立一帮一互助学习小组,辅导后进生,同时促进优生,共同进步。

三、合理落实各项教学常规。

1、备好课是上好课的基础,是提高课堂教学质量的关键,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,备好三环六步的各个环节。

2、上课时定向要明确,在充分了解学情的基础上,引导学生弄清疑难。点难拨疑时要面向全体学生,使各类学生都学有所得。都有所发展。

3、作业布置要分层,以关注不同层次的学生。批改要认真、及时,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。

4、进行个别辅导,优生提升能力,扎实打牢基础知识;

四、教研工作。

积极参加教科室和教研组组织的各项教研活动。结合学校的双思三环六步讨论怎样优化三环六步教学设计,不断提高课堂教学效率,进行交流体会。在上好每一节课的基础上,及时写出教学反思并及时发布。通过教研不断创新自己的教育理念,提高自己的业务水平。

锐角三角函数人教版数学九年级教案 篇11

2010。

教学计划。

一、指导思想。

以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过本期的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生手数学创新意识、良好个性品质以及初步的唯物主义观。

二、教学内容。

本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。

三、教学目标。

知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖。

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注重整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

五、课时安排。

全学期约为22周,安排如下:

~:二次根式。

~:一元二次方程。

~:旋转。

~:圆。

~:概率初步。

~:第二十六章。

~:第二十七章。

锐角三角函数人教版数学九年级教案 篇12

本章是在小学了解了随机现象发生的可能性基础上,进一步学习事件的概率。生活中概率大量存在,与我们的生产生活密切相关。本节主要是了解随机事件和有关概念,教科书中设置了三个问题,通过问题1抽签试验和问题2掷骰子试验,主要让学生感受到,在一定条件下重复进行试验时,有些事件是必然发生,有些事件是不可能发生的,有些事件是有可能发生也有可能不发生的,在这两个具体问题探讨的基础上,提出随机事件等有关概念,要求学生能够在具体的情境中判断一个事情是随机事件还是确定性事件。问题3是一个摸球试验,主要探讨随机试验发生的可能性,以及随机事件发生可能性相对大小的定性描述,并要求通过试验验证判断。通过问题3,让学生了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性大小很可能不同,并能够判断几个事件发生的可能性的相对大小。通过这三个问题,为下一节概率的学习做好铺垫。

二、教学目标。

1、理解必然发生的事件、不可能发生的事件、随机事件的概念。

2、了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同。

3、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。

4、感受数学与现实生活的联系,积极参与对数学问题的探讨,认识动手操作试验是验证得出结论的好方法。

5、能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识。

三、教学重点与难点。

重点:掌握随机事件的特点,会判断现实生活中的随机事件。

难点:判断现实生活中哪些事件是随机事件.

四、教学方法。

动手试验交流归纳。

五、教学媒体工具。

多媒体、乒乓球、扑克牌、骰子。

六、教学过程。

(活动一)情境导入。

1、观看图片回答问题(见ppt)。

2、摸球游戏:

三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(小组内挑选3名同学来参加)。

游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.

教师活动:引导试验。

学生活动:积极参与并归纳。

设计意图:学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的。

通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡。

(活动二)自主探究(问题1)。

问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们准备了五张背面看上去相同的纸牌,上面分别标有出场顺序的数字1,2,3,4,5.把牌充分洗匀后,小军先抽,他在看不到纸牌上数字的情况下从中任意(随机)抽取一张纸牌.请思考以下问题:

(1)抽到的数字有几种可能的结果?

(2)抽到的数字小于6吗?

(3)抽到的数字会是0吗?

(4)抽到的数字会是1吗?

通过简单的推理或试验,可以发现:

(2)抽到的数字一定小于6;。

(3)抽到的数字绝对不会是0;。

(4)抽到的数字可能是1,也可能不是1,事先无法确定.

在一定条件下,有些事件必然会发生.例如,(1)“抽到的数字小于6”,这样的事件称为必然事件.

相反地,有些事件必然不会发生.例如,(2)“抽到的数字是0”.这样的事件称为不可能事件.

必然事件与不可能事件统称确定性事件.

在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,(4)“抽到的数字是1”,这个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.

教师活动:引导学生自我试验。

学生活动:积极操作、试验、思考、分析,初步感知事件发生的情况类别。

设计意图:通过学生操作、结合实践经验,初步感知事件的发生从结果上看有三种情况。

锐角三角函数人教版数学九年级教案 篇13

1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。

3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

【学习难点】反比例函数的解析式的确定。

【学法指导】自主、合作、探究。

教学互动设计。

【自主学习,基础过关】。

一、自主学习:

(一)复习巩固。

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.

2.一次函数的解析式是:;当时,称为正比例函数.

3.一条直线经过点(2,3)、(4,7),求该直线的解析式.

以上这种求函数解析式的方法叫:

(二)自主探究。

提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?

(2)某住宅小区要。

锐角三角函数人教版数学九年级教案 篇14

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的`实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

ppt课件圆柱等分模型。

教学过程:

锐角三角函数人教版数学九年级教案 篇15

位似图形的概念,位似图形的性质,位似图形的画法.

(二)内容解析。

位似是在学生已经掌握了相似的相关知识,积累了一定的图形研究方法的基础上,进行探究的.位似就是具有特殊位置关系的相似,是对相似的纵深挖掘与提升,可以让学生进一步体会相似的应用价值和丰富内涵.

根据给出的一系列图形,引导学生观察这些图形的共同特点,从而归纳出位似图形的概念和性质.通过归纳给出图形的共同特点,得出位似图形的概念,体现了研究几何问题的一般方法.对于图形的概念学习,尤其要注重概念的生成过程和基本含义.而利用作位似图形的方法,将一个图形放大或缩小,本质上是位似图形性质的应用,它也是一个集动手与动脑于一体的活动.

二、目标和目标解析。

(一)教学目标。

1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.

2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.

(二)目标解析。

2.学生通过对作图方法的模仿和归纳,总结出作位似图形的方法和步骤,并能够利用作位似图形的方法将一个图形放大或缩小.

三、教学问题诊断分析。

位似是相似的延续,学生已经学习了相似的相关知识,对图形已经有了丰富的认知基础,教学中通过实际生活中的图形引入,对位似图形有一个直观的认识,同时也体现了位似知识存在的必要性,增强学习的兴趣和信念.本节教学中应该注重学生自我动手操作能力的培养,使学生重视作图的准确性和规范性.

在形成位似图形的概念,探索位似图形的性质过程中,强调讨论和探究,提高学生分析问题、解决问题、发现和创新的能力,对初三学生是必须的,也是适可的.

本课的教学重点是位似图形的概念,位似图形的作图,以及位似与相似的关系.

教学难点是位似图形的准确作图,动手能力的落实.

四、教学过程设计。

(一)创设情境,引入新知。

位似图形的概念。

问题1在日常生活中,我们经常见到下面所给的这样一类相似的图形,他们有什么特征?

师生活动:教师展示图片,提出问题.学生观察、欣赏图形.

设计意图:教师通过展示的图片调动学生的注意力,激发起好奇心和求知欲.使学生充分感知位似,欣赏位似图形.

师生活动:学生从相似图形的对应顶点、对应边、对应角出发,通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生思考,并总结位似图形的概念.

教师加以归纳,得到位似图形的定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.

设计意图:通过几个图形的观察,使学生初步意识到位似的特征:对应点连线交于一点.

(二)巩固提高,运用新知。

问题1判断下列各对图形是不是位似图形?

(1)正五边形abcde与正五边形a′b′c′d′e′;。

(2)等边三角形abc与等边三角形a′b′c′.

设计意图:通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足的条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在直线都经过同一点.

问题2是否相似图形都是位似图形?举例说明.

问题3位似图形与相似图形有什么区别和联系?

师生活动:学生举例说明相似图形不一定是位似图形,并总结出位似图形具备相似的所有性质,除此之外,还有其特性,所以位似图形是特殊的相似图形.

设计意图:通过思考位似图形和相似图形的联系与区别,让学生进一步理解位似图形的概念.

位似图形的性质。

问题4观察几组位似图形,猜想对应边之间有什么位置关系?

师生活动:学生通过观察,猜想位似图形对应边是互相平行或者重合的.教师通过多媒体演示,让学生直观的感受到位似图形对应边平行或重合.

问题5已知问题1中的图形,思考对应点到位似中心的距离之比与相似比之间的关系.

师生活动:学生通过观察图形的特点,教师引导学生运用相似的知识证明对应点到位似中心的距离之比与相似比的关系.最终总结出位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.

设计意图:位似的性质通过讨论、对比、证明自然得到,能使学生比较牢固地掌握,比直接给出效果要好,同时让学生意识到数学知识之间的联系性,把新知识转化为旧知识。

锐角三角函数人教版数学九年级教案 篇16

学习目标:

1、掌握文中字词,理解文意。

2、品读课文理解作者描绘景物作用,体会作者的思想感情。

读准下列加点字。

羸马微泮飚风舛邸砾砾噫貂帽餬烟霾着重裘。

牛刀初试。

1、解释下面句子中划横线的字。

委积道上谭锋甫畅。

着重裘以敌之而犹不能堪。

苟非大不得已而仆仆于是。

书之所以志予之嗜进而无耻。

2、翻译下列句子。

锐角三角函数人教版数学九年级教案 篇17

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点。

1教学重点。

会利用圆和其他已学的相关知识解决实际问题。

2教学难点。

圆与其他图形计算公式的混合使用。

教学工具。

ppt卡片。

教学过程。

1复习巩固上节知识,导入新课。

2新知探究。

圆环面积。

一、问题引入。

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解。

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积。

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用。

做一做第2题:

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

圆与正方形。

一、问题引入。

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点。

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结。

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用。

70页做一做:

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px。

随堂练习。

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)。

6小结。

1.今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2.在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7板书。

锐角三角函数人教版数学九年级教案 篇18

14.(曲靖中考)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()。

a.主视图相同b.左视图相同。

c.俯视图相同d.三种视图都不相同。

15.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).

16.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.

综合题。

20 3698582
");