《分数的基本性质》教案(最新2篇)

圆圆 分享 时间:

通过对分数的基本性质进行讲解,帮助学生理解分数的基本概念及其运算规则,如何灵活应用于实际问题中呢?以下由阿拉网友整理分享的《分数的基本性质》教案相关范文,供您学习参考,希望对您有所帮助!

《分数的基本性质》教案

《分数的基本性质》教案 篇1

分数的基本性质

教学内容:

青岛版五年级数学下册第20---22页。

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能用分数的基本性质解决一些简单的实际问题。

2、通过教学使学生正确认识和理解变与不变的辨证关系。

3、培养学生的观察能力、抽象思维能力,通过学生的成功体验,培养学生热爱数学的情感。

教学重点:

理解和掌握分数的基本性质

教学难点:

用分数的基本性质解决一些简单的实际问题。

教学准备:

纸条、彩笔、各种卡片。

教学过程:

一、创设情境,提出问题

谈话:(出示课件)光明小学举行了校园科技周活动,看:同学们正在制作科技展牌。今天老师就给大家带来了三幅作品,请看第一张,看到这幅作品,你想到了那个分数?你是怎样想到的?请看第二幅作品,图片占整个版面的几分之几?第三幅作品呢?

谈话:请同学们看大屏幕,  表示的都是每幅作品中图片部分占整个版面的几分之几,大家比较这三张展牌,注意观察,这三个分数,� 请小组长快速地从一号信封中拿出三张一样长的纸条,小组合作,用折一折、涂一涂的方法分别表示出这三个分数,然后比一比,看,这三个分数相等吗?

学生操作。

师展示一组的纸条。

谈话:同学们都是这样涂的吗?你有什么发现?

学生操作得出这三张纸条的涂色部分相等,因此分数的大小也相等。

谈话:大家同意吗?好,现在老师就把大家的发现写下来: = =

同学们注意观察这三个分数,这三个分数的大小不变,他们的分子呢?分母呢?老师还能写一组这样的分数。请同学们看黑板。(老师随机写出

2/5=6/15=12/30,你能像老师这样写一组这样的分数吗?学生写分数。

三、汇报交流,评价质疑

谈话:请同学们观察黑板上的两组相等的分数,思考:要使分数的大小不变,分数的分子和分母应怎样变化?请把你的发现告诉你小组的同学。小组长注意,要把你们组发现的规律记在练习本上。

四、抽象概括,总结提升

谈话:哪个小组想把你们组发现的规律和探究的过程展示给同学们?

学生可能得出很多规律

谈话:同学们对于他们组的发现,你想提问什么问题吗?

学生可能提出你是怎么发现的?(如果学生提不出来老师提)

谈话:哪个组还有补充。对他们的补充你有什么问题要提吗?

谈话:同时除以相同的数,分数的大小也会不变吗?你是怎么发现的?

大家听明白了吗?

谈话:你能把刚才同学们的发现概括出来吗?

学生能得出分子和分母同时乘或除以相同的数,分数的大小不变。(师板书)

谈话:这是同学们根据这两组例子发现的规律,是不是所有的分数经过这样的变化,大小都不变呢?下面我们就来验证一下。

请同学们打开信封看老师给大家准备的素材,先用一张纸条或在一条线段上表示一个分数,然后根据规律变化出另一个分数并在另一张纸条或线段上表示出来。最后再放在一起比较,看两个分数大小是否相等。

生操作。

谈话:谁来展示一下你们的验证情况。

学生展示。

谈话:这个结论是你发现的,请你骄傲的写上去。哪组跟他们验证的分数不同?

谈话:有没有验证出两个分数大小不相等的?(没有)也就是说我们发现的规律是正确的。请同学们利用这个规律完成下面的题 =   括号内可以填几?为什么0不可以?根据学生的回答,教师随机补充0除外,并告诉学生:

这个规律就是分数的基本性质。出示课题

五、巩固应用,拓展提高

1、光明小学的同学还设计了一个这样的版面,你知道图片部分占这个版面的几分之几吗?你能写出两个与十分之二相等的分数吗?说说你是怎样想出来的。

2、请你把相等的分数连起来。

3、请你来当设计师。

光明小学计划做一块综合栏目的展牌,内容如下:“知识城堡”占 版,“活动乐园”占 版,“科技图片”占 版,“生活园地”占 版,其余的为“开心一刻”。

(1)哪些栏目的版面一样大?

(2)哪种栏目的版面最大?

(3)请你画图设计版面。(略)

使用说明:

1:课后反思:对分数的基本性质理解的很好,大部分学生对此理解的不错。

2:教学建议: 通过练习使学生进一步加深理解和巩固掌握分数的基本性质,

3:需要破解的地方:培养学生的观察能力、抽象思维能力,通过学生的成功体验,培养学生热爱数学的情感。

《分数的基本性质》教案 篇2

教学前的思考:

一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的`饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

教学设计:

一 故事提供“猜想”素材:Flash动画故事引入。(教师出示课件)

师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

生:高兴!

师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)

师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

生1:胖和尚吃的多。

生2:矮和尚吃的多。

……

师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案。(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)

二 用事实“验证”,完整性质。

1.实际操作列等式证实分数大小相等。

师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)

师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

生:阴影部分的大小相等。

师:阴影部分相等说明这三个分数怎样?

生:三个分数相等。

(随着学生的回答,老师将板书的三个分数用“=”连接。)

2.观察课件证实分数大小相等。

师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

师:这三个分数所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接。)

3.初步概括分数基本性质。

师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)

师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)

生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)

师:你们观察的真仔细!请大家给点掌声好吗?

(学生掌声起,激情高长,课堂教学充满活力。)

师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?

(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)

4、完整分数基本性质:

师:(出示课件)请同学们填空:

(教师请一位会操作鼠标的同学在课件中填空)

师:第3题( )里可以填多少个数?第4题呢?

生:可以填无数个。

师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)

生:不能填零。

师:为什么不能填零?

生:分数的分母不能为零。

(教师对学生的回答进行评价)

师:所以我们总结的这条规律必须加上一个条件“零除外”

(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)

师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)

三 深入理解分数基本性质

1.学生自学,深入理解性质。

师:请同学们把书翻到108页,自读分数的基本性质。

师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?

生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)

2.学生独立完成做一做1。(完成后小组内互相评价)

3.找出与

相等的分数:

(教师出示课件,请一位同学在课件中连线,教师进行评价)

4.请同学们自学并完成例2、(教师巡视,个别进行辅导)

……

四 照应Flash动画故事,渗透“形式与实质”的辩证观点

教师在黑板上出示自制的三个同样大小的圆饼

师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)

生:三个和沿吃的一样多。

师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

……

五 课堂小结:这节课你有什么收获?(学生板书课题)

教学后的感悟:

1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

20 3950677
");