数学教案:一元二次方程精编4篇
【阅读指引】阿拉题库网友为您分享整理的“数学教案:一元二次方程精编4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
《一元二次方程》的优秀教案1
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
元二次方程的应用2
本节是一元二次方程的应用的继续和发展,由于能用一元二次方程解的应用题,一般都可以用算术方法解而需要用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以讲本节可以使学生认识到用代数方法解应用题的优越性和必要性。
列一元二次方程解应用题,其应用相当广泛,如在几何、物理及其他学科中都有应用;其数量关系也比可以用一元一次方程解决的问题复杂的多。因此,本节所学习的内容,不仅是中学数学中的重点,也是难点。
在教学过程中,通过列一元二次方程解应用题提高学生的逻辑思维能力和分析、解决问题的能力。
元二次方程3
教学目标
1. 了解整式方程和的概念;
2. 知道的一般形式,会把化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:的概念和它的一般形式。
难点:对的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。
2)重点、难点分析
理解的定义:
是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:
(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。
(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。
教学目的
1.了解整式方程和的概念;
2.知道的一般形式,会把化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点 和难点:
重点:
1.的有关概念
2.会把化成一般形式
难点: 的含义。
教学过程 设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说首先必须是一个整式方程,但是一个整式方程未必就是一个、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做。(板书的定义)
3.强化的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4. 概念的延伸
提问:很多吗?你有办法一下写出所有的吗?
引导学生回顾的定义,分析项的情况,启发学生运用字母,找到的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。
3).强调:的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个中一二次项、一次项、常数项:二次项系数、一次项系数。
课外作业 :略
《一元二次方程》的优秀教案4
教学目标:
知识与技能目标:
经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
过程与方法目标:
经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的`主动性,提高数学的应用能力。
情感态度与价值观目标:
培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。
教学重点:
理解一元二次方程的概念及其形式。
教学难点:
一元二次方程概念的探索
教学过程
一、情境引入
今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)
二、探索新知
列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)
请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)
观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。
请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。
2、以上方程与一元一次方程有什么相同与不同之处?
3、你能说说什么样的方程是一元二次方程吗?
4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?
5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?
6、你认为一元二次方程的概念中重点要强调的是什么?为什么?
请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?
请你抢答问题7。
7、判断下列方程是不是一元二次方程,若不是请说明理由。
同桌两人能举出几个一元二次方程的例子吗?
探索二
先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。
找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。
三、巩固练习
请看问题2,
2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?
四、课堂:
先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。
五、自我检测:
看看我们的收获是不是真的
硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改
1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?
根据题意,列出方程为------------------------------------。
2、把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:
方程
一般形式
二次项系数
常数项
3x2=5x-1
(x+2)(x-1)=6
3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k为何值时,是一元二次方程?k--------------是一元二次方程。
(2)k为何值时,是一元一次方程?k-------------是一元一次方程。
六、小组
请小组长本小组今天大家的表现。
七、作业
课本42页1(2),2(1)(2)(3)
能力挑战:
已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?
板书设计:一元二次方程
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一个未知数(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)
二次项一次项常数项
二次项系数一次项系数常数项系数
参加区优质课评比反思:
这次有幸参加我区优质课评比,感受颇多。
一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。
二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。
三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。
上一篇:《压强》教案4篇
下一篇:《蜜蜂》教案优推4篇