古典概型公开课教案【精彩10篇】
通过实例讲解古典概型的基本概念和应用,帮助学生理解概率计算的基本方法与思维。如何将理论与实际结合?以下是网友为大家整理分享的“古典概型公开课教案”相关范文,供您参考学习!
古典概型公开课教案 篇1
一、教学目标
【知识与技能】
会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】
通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】
在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点
【重点】
古典概型的概念以及概率公式。
【难点】
如何判断一个试验是否是古典概型。
三、教学过程
(一)导入新课
提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?
追问:如何从理论上来计算出每个人的中奖率呢?
引出课题:古典概型
(二)探究新知
1.探索基本事件和古典概型的概念
师生活动:师生共同探讨两个概念的生成
(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?
(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?
活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是
(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?
预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;
(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是
,如果某个事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=
思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(三)巩固提高
1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
(1)共有多少个基本事件?
(2)摸出的2只球都是白球的概率是多少?
2.有五根细长的木棒,长度分别为 1,3,5,7,9,任取三根,可以组合成三角形的概率。
师生活动:学生独立完成,同桌互相交流,教师适时纠正答案。
(四)小结作业
小结:教师与学生一起回顾本节课所学的主要内容,并请学生回答一下问题:
1.古典概型的特点是什么?
2.古典概型的计算公式是什么
作业:1.说一说生活中的一些古典概型的实例,并列举出其中的基本事件是什么?
2.掷两次骰子,求出现点数之和为奇数的概率。
四、板书设计
古典概型公开课教案 篇2
1.基本事件:
试验结果中不能再分的最简单的随机事件称为基本事件.
基本事件的特点:
(1)每个基本事件的发生都是等可能的.
(2)因为试验结果是有限个,所以基本事件也只有有限个.
(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.
(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.
2.古典概型的定义:
(1)有限性能:试验中所有可能出现的基本事件只有有限个;
(2)等可能:每个基本事件出现的可能相等.
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
3.计算古典概型的概率的基本步骤为:
(1)计算所求事件a所包含的基本事件个数m;
(2)计算基本事件的总数n;
(3)应用公式p(a)?m计算概率.n
4.古典概型的概率公式:
p(a)?a包含的基本事件的个数
基本事件的总数.应用公式的关键在于准确计算事件a所包含的基本事件的个数和
基本事件的总数.
要点诠释:
古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和钱币”问题满足以上两个条件,所以是古典概型问题;若骰子或钱币不均匀,则每个基本事件出现的可能不同,从而不是古典概型问题;“在线段ab上任取一点c,求ac>bc的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.
古典概型公开课教案 篇3
一、教学目标
(一)知识与技能
1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.
2.理解并掌握几何概型的概念.
3.掌握几何概型的概率公式,会进行简单的几何概率计算.
(二)过程与方法
1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.
2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.
(三)情感、态度、价值观
1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.
2.通过对几何概型的教学,帮助学生树立科学的世界观和辩*的思想,养成合作交流的习惯,初步形成建立数学模型的能力.
二、教学重点与难点
教学重点:了解几何概型的基本特点及进行简单的几何概率计算.
教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.
三、教学方法与教学手段
教学方法:“自主、合作、探究”教学法
教学手段:电子白板、实物投影、多媒体课件辅助
四、教学过程
五、板书:几何概型的概念:设d是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域d内随机地取一点,区域d内的每一点被取到的机会都一样;随机事件a的发生可以视为恰好取到区域d内的某个指定区域d中的点。
这时,事件a发生的概率与d的测度(长度、面积、体积等)成正比。
我们把满足这样条件的概率模型称几何概型.
板书:几何概型的概率计算公式:
古典概型公开课教案 篇4
一、教材分析
本节课的内容选自《普通高中课程标准实验教科书数学必修3(a)版》
第三章中的节古典概型。它安排在随机事件之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念及利用古典概型求随机事件的概率。
二、教学目标
根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:
①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生猜想、化归、观察比较、归纳问题的能力。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率,渗透数形结合、分类讨论的思想方法。
③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
三、教学的重点和难点
重点:理解古典概型的含义及其概率的计算公式。
难点:如何判断一个试验是否为古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、学情分析
高一(x)班是一个xx班,学生数学基础比较薄弱,对数学的了解比较浅显,课堂接受容量较低。本课的学习是建立在学生已经了解了概率的意义,掌握了概率的基本*质,知道了互斥事件和对立事件的概率加法公式。学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。多数学生能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强。
五、教法学法分析
本节课属于概念教学,根据这节课的特点和学生的认知水平,本节课的教法与学法定为:为了培养学生的自主学习能力,激发学习兴趣,借鉴布鲁
纳的发现学习理论,在教学中采取以问题式引导发现法教学,利用多媒体等手段,引导学生进行观察讨论、归纳总结。
六、教学过程
(一)复习引入
(1)什么是基本事件?
在一次试验中可能出现的每一种基本结果称为基本事件
(2)什么是等可能基本事件?
在一次试验中,每个基本事件发生的可能*都相同,则称这些基本事件为等可能事件
(3)什么是互斥事件?
不可能同时发生的事件是互斥事件
(4)如果事件a与事件b互斥,则
p(a∪b)=p(a)+p(b)
【设计意图】复习基本事件是因为对于每一个概率问题我们都需要首先研究它的基本时间空间。复习等可能事件与互斥事件是为了探索古典概型定义时,对古典概型的特征分析更好的猜测。复习互斥事件加法公式是为了古典概型中事件概率求法的理论推导时有所应用。
(二)新课引入
1.试验:
①掷一枚质地均匀的钱币,观察落地后哪一面朝上?
②掷一枚质地均匀的骰子,观察出现的点数?
③一先一后掷两枚硬币,观察正反面出现的情况?
【设计意图】从学生熟悉的试验出发,让同学们自己思考探索
师:在试验一、试验二和试验三中基本事件空间分别是什么?各随机事件发生的可能*分别是多少?
生:在试验一中基本事件空间={正,反},两种情况发生的可能相同都为
在试验二中基本事件空间={1,2,3,4,5,6},六种情况发生的可能*相同都为1
在试验三中基本事件空间={(正,反),(反,正),(正,正),(反,反)},四种情况发生的可能相同都为
2.以问题的形式将试验一、二、三的结果以表格的形式归纳表现出来。问题:试验一、二、三中基本事件空间,每个基本事件出现的概率是多少?(利用概率*质进行求解)
试验一、试验二、实验三的归纳表格:616
总结、概括)
让同学们对照表格观察猜想发现三个试验的共同点:
(1)有限*在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件:
(2)等可能每个基本事件发生的可能*是均等的。
我们称这样的实验为古典概型。上述的三个例子都是古典概型。
【设计意图】三个实验都是古典概型,因此从试验出发寻找出它们的共同点,进而得到古典概型的定义。同时让同学自己探索培养了学生猜想、化归、观察比较、归纳问题的能力。
3.古典概型的定义:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能相等。
我们将具有这两个特点的概率模型为古典概率模型,简称为古典概型。
4.练习
(1)在适宜的条件下”种下一粒种子,观察它是否发芽?“
这个实验的基本事件空间为(发芽,不发芽),而”发芽“或”不发芽“这两种结果出现的机会一般是不均等的。
(2)从规格直径为300+的一批合格产品中任意抽一根,测量其直径d?
测量值可能是从~之间的任何的一个值,所有可能的结果有无数个
【设计意图】判断一个试验是否为古典概型是本节课的重点难点,在这里设这个联系可以起到检验同学是否真正理解古典概型的作用,同时也可以让同学们学会新知识的应用。
5.学生讨论,举出一些身边的古典概型的例子:
(如:“用抽签法从班里抽取一名学生代表”这是一古典概型;“用抽签法从班里抽取一名学生代表,结果为男代表或者女代表”假如男女生人数不相等则不是古典概型。
【设计意图】通过以上两个问题,让学生加深对古典概型定义及特点的理解;让学生讨论、举实例进一步加深学生对概念的理解,也提高学生的发现能力等。
(三)探索方法
1.思考:在古典概型下,随机事件出现的概率如何计算?
思考:①在掷骰子的试验中,事件a“出现3”发生的概率是多少?
②在掷骰子的试验中,事件b“出现的点数不大于4”发生的概率是多
少?
【设计意图】这里没有直接给出公式,而是安排了问题,引导学生进行知识的迁移,培养学生的逻辑思维能力,展示学生的思维过程,在课堂上把问题交给学生,提倡学生自主学习的新理念,也对古典概型公式这一重点进行突破。培养学生猜想,对比,论*的数学思维。
2.理论
一般地,对于古典概型,如果试验的n个事件为a1,a2,a3??an,由于基本事件是两两互斥的,则由互斥事件概率加法公式得
?p(a1)+p(a2)+p(a3)+?..+p(an)=p(a1ua2ua3??.uan)=p()=1
又因为每个基本事件发生的可能*相同,即p(a1)=p(a2)=?..=p(an)代入上式得1
nxp(a1)=1即p(a1)=n1所以在基本事件总数为n的古典概型中,每个基本事件发生的概率为n如果随机事件a包含的基本事件数为m,同样地,由互斥事件概率加法公式可m得,所以在古典概型中古典概型的概率计算公式:np(a)=a包含的基本事件个数
总的基本事件个数
这一定义称为概率的古典定义。
古典概型公开课教案 篇5
一、教材分析
1、教材地位、作用
本节课的内容选自《普通高中课程标准实验教科书数学必修3(a)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标
1、知识与技能目标
⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。
2、过程与方法
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能*事件的概念及其概率公式,使学生对问题的理解从感*认识上升到理*认识。
3、情感态度与价值观
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点
重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程
1、创设情境提出问题
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维形成概念
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬*”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)
【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能*相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能*相等,都是;
例1中所有可能出现的基本事件有“a”、“b”、“c”、“d”、“e”和“f”6个,并且每个基本事件出现的可能*相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能*相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解
试验“向一个圆面内随机地投*一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能*相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行*击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻*与批判*。
4、观察比较推导公式
【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越*和这一做法的合理*。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件a包含的基本事件的个数和试验中基本事件的总数。
【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高
【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理课堂小结
1、本节课你学习到了哪些知识?
2、本节课渗透了哪些数学思想方法?
7、作业布置
1、阅读本节教材内容
2、必做题课本130页练习第1,2题,课本134页习题3。2a组第4题
3、选做题课本134页习题b组第1题
8、教学反思
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
古典概型公开课教案 篇6
老师、同学们早上好。今天我说课的课题来自普通高中课程标准数学必修3第三章第2节古典概型。下面,我将围绕教什么,怎么教,为什么要这样教从说教材、说教学目标、说教法学法、说教学过程及说板书设计五个方面来加以说明,请老师、同学们加以批评指正。
一、教材分析
1.教材的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其*质,又是以后学习条件概率的基础,起到承前启后的作用。
2.学情分析
从心理特征来说,已到高一下学期学生,刚经过高一上学期的适应期,知识增多,能力增强,但思维的局限*还很大,能力也有差距。
从认知状况来说,学生在此之前已经学习了随机事件的概率,对随机事件的概念已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于古典概型的判断与计算,学生可能会产生一定的困难,针对我班学生基础较差,教学中给予以从特殊到一般的认知规律、简单明白深入浅出的分析。
3.教学的重点和难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
2、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1.知识与技能目标:
(1)通过试验理解基本事件的概念和特点。
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、能力目标:
(1)经历公式的推导过程,体验由特殊到一般的数学思想方法,发展抽象思维能力。
(2)学生通过实际问题的条件判断是否为古典概型,及应用公式解决问题,培养分析问题、解决问题和应用问题的能力。
3、情感态度与价值观目标:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握“理论来源于实践,并把理论应用于实践”的辨*思想。
二、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动*,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
三、教学过程分析
我将侧重说明这一部分。新课标指出,()数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)动手试验,导入新课
分析事件的构成,考察两个试验:掷硬*、骰子。通过教师提问学生试验可能发生的结果有什么?引出基本事件的概念:随机试验中每一个可能发生的结果称为基本事件。再通过提问随机抽取三个球这一试验与例题1中的基本事件有哪些,巩固基本事件的概念。让学生观察三个试验与例题一的结果,由教师引导学生,学生通过小组讨论得出两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能*相等。引出古典概型的概念,即:将具有这两个特点的概率模型成为古典概型。
设计意图:通过试验,让学生动手*作,有利于学生顺利的进入学习情境中。
(2)探究试验,准确判断
利用板书,写出两个不是古典概型的例子,让学生以同桌为单位进行讨论,为什么不满足古典概型?怎么样才能满足古典概型?
设计意图:通过反例,让学生更清楚判断是否为古典概型,只要判断出是否满足古典概型的两个特点。以正反例的形式创设情境,产生对比,使学生对知识产生更深层次的理解,激发学生的学习兴趣。
(3)理*概括,提炼方法
回顾前两个试验,由教师示范如何求解掷硬*中出现正面及反面的概率,再由学生计算出掷骰子试验中出现1至6点的概率。教师进而提问“那么出现偶数点的概率为多少?”通过同桌讨论,得出结果。之后教师引出本节课的重点,古典概型的概率计算公式。
设计意图:根据我班学生的实际情况,教师先作示范,再由学生自主进行讨论,得出结果,再由教师通过学生得出的结果(特殊的例子)引出一般的计算公式(古典概型计算公式),符合本节课的学情分析,从特殊到一般的认知规律、简单明白深入浅出的分析。
(4)实践应用,知识迁移
这部分主要采用讲解例题2,练习1,2.
设计意图:几道题由浅入深、由易到难,让学生从做题中提炼出解题步骤,归纳为:一判,二找,三计算,具体为判断是否为古典概型,找出基本事件总数,事件a所包含的基本事件个数,应用公式,得出结果。
(5)总结回顾,反思内化
随机抽查几位学生,通过学生自己发言,总结本节课学习到知识,再由教师进行补充说明。
设计意图:培养学生归纳总结能力,同时,这一环节意图为反馈教学,内化知识。
(6)布置作业,巩固知识
练习3、4.
思考题:写出你是如何更好的记忆古典概型的特点及计算公式
设计意图:根据学生情况,记忆古典概型的特点及计算公式非常有必要。通过学生自己写出记忆方法,无形之中让学生对公式加深印象。练习3,4的难度适宜,可以巩固今天学习的新知识,发现和弥补教学中的遗漏和不足,同时培养学生良好的学习习惯。
四、板书设计
概念及公式
标题
例题
习题
本节课我的设计理念在于,围绕一个明确的教学目标,抓住教学重点,突破教学难点,最后实现教学目标。我的说课到此结束,谢谢老师、同学们的倾听。
古典概型公开课教案 篇7
一、教学目标:
1、知识与技能:(1)每个基本事件出现的可能相等;
(2)掌握古典概型的概率计算公式:p(a)=
(3)掌握列举法、列表法、树状图方法解题
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.-2-1-jy-
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩*唯物主义观点.
二、重点与难点:
1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.
教学设想:
1、创设情境:(1)掷一枚质地均匀的钱币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.21教育名师原创作品
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10.
师生共同探讨:根据上述情况,你能发现它们有什么共同特点?
2、基本概念:
(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本p121~126;
(2)古典概型的概率计算公式:p(a)=
议一议】下列试验是古典概型的是?
①.在适宜条件下,种下一粒种子,观察它是否发芽.
②.某人击5次,分别命中8环,8环,5环,10环,0环.
③.从*地到乙地共n条路线,选中最短路线的概率.
④.将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.
古典概型的判断
1).审题,确定试验的基本事件.
(2).确认基本事件是否有限个且等可能
什么是基本事件
在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。(其他事件都可由基本事件的和来描述)
下面我们就常见的:
抛掷问题,抽样问题
探讨计数的一些方法与技巧.
抛掷两颗骰子的试验:
用(x,y)表示结果,
其中x表示第一颗骰子出现的点数?
y表示第二颗骰子出现的点数.
(1)写出试验一共有几个基本事件;
(2)“出现点数之和大于8”包含几个基本事件?
规律总结]:要写出所有的基本事件,常采用的方法有:列举法、列表法、树形图法等,但不论采用哪种方法,都要按一定的顺序进行、正确分类,做到不重、不漏.
方法一:列举法(枚举法)
[解析】用(x,y)表示结果,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,则试验的所有结果为:
【结论】:(1)试验一共有36个基本事件;
(2)“出现点数之和大于8”包含10个基本事件.
方法二列表法
坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.
方法三:树形图法
三种方法(模型)总结
1.列举法
列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举即可得出随机事件所含的基本事件数.但列举时必须按一定顺序,做到不重不漏.
2.列表法
对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏
3.树形图法
树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的探究.
抽样问题
【例】?一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.
(1)共有多少个基本事件?
(2)两个都是白球包含几个基本事件?
[解析]:(1)采用列举法:分别记白球为1,2,3号,黑球为4,5号,有以下10个基本事件.
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),
(2,5),(3,4),(3,5),(4,5)
(2)“两个都是白球”包括(1,2),(1,3),(2,3)三种.
【例】某人打靶,击5,命中3,排列这5*是否命中顺序,问:
(1)共有多少个基本事件? .
(2)3连中包含几个基本事件?.
?(3)恰好2连中包含几个基本事件?
[例3】一个口袋内装有大小相等,编有不同号码的4个白球和2个红球,从中摸出3个球.
问:(1)其中有1个红*球的概率是 .
?(2)其中至少有1个红球的概率是 .
课堂总结:
1.关于基本事件个数的确定:可借助列举法、列表法、
树状图法(模型),注意有规律*地分类列举.
2.求事件概率的基本步骤.
(1)审题,确定试验的基本事件
(2)确认基本事件是否等可能,且是否有限个;若是,则为
古典概型,并求出基本事件的总个数.
(3)求p(a)
【注意】当所求事件较复杂时,可看成易求的几个互斥事件的和,先求各拆分的互斥事件的概率,再用概率加法公式求解
练习
1、学习指导例1(1)、活学活用;(第76页)
古典概型公开课教案 篇8
一、教学设计
本节课内容选自于高中教材北师大版必修3第二章第三节,课时安排为三个课时,本节课内容为第二课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、学情分析四大方面来阐述我对这节课的分析和设计:
(一)、教材分析
1.教材所处的地位和作用
本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要.
2.教学的重点和难点
重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;
②利用散点图直观认识两个变量之间的关系;
难点:①变量之间相关关系的理解;
②作散点图和理解两个变量的正相关和负相关
(二)、教学目标分析
1.知识与技能目标
通过收集现实问题中两个有关联变量的数据认识变量间的相关关系
2.过程与方法目标:
明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定的相关关系,并利用散点图直观体会这种相关关系.
3.情感态度与价值观目标:
通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩*法思想。
(三)、教学方法与手段分析
1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,充分利用好教学案进行教学,具体采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2.教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动与积极能力。
(四)、学生学习情况分析
我所教学的学生是我校高一(16)班的学生,经过一年的学习,有部分学生知识积累已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但更多部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、探究以符合这类学生的心理发展特点,注重学生自主学习能力、学习习惯的培养从而促进思维能力的进一步发展。
(五)、教学过程
知识探究(一):变量之间的相关关系
「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。
引导出概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机,这种变量之间的关系称为相关关系。相关关系是一种非确定*关系。
知识探究(二):散点图
(1)正相关:散点图中的点散布在从xx到xx的区域。
(2)负相关:散点图中的点散布在从xx到xx的区域。
「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出判断变量之间关系的方法就是利用散点图来判断,并通过学生亲自动手作散点图,交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。
画出散点图
知识探究(三):线性回归
回归直线方程的推导
(1)回归直线:观察散点图的特征,如果各点大致分布在附近,就称两个变量之间具有线*相关的关系,这条直线叫做回归直线。
(2)回归方程:对应的方程叫做回归方程。思考3:回归直线方程的推导:我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?
「设计意图」:利用实例分析了散点图的分布规律,引导学生推导回归直线的存在,得到直线方程,并利用直线方程估计可能的结果。通过身边的实例让学生感受数学的魅力。
各位老师们,以上便是古典概型公开课教案与古典概型教案设计思路和目标的全部内容,小编收集整理出了10篇,希望能在大家编写同主题的教案时起到帮助。相信大家在看过上述教案模板后,也会从中吸取并总结自己的授课经验。
古典概型公开课教案 篇9
教学目标:
1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;会应用古典概型的概率计算公式:
P(A)=
A包含的基本事件个数
.
总的基本事件个数
2.通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.
3.通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
教学重点难点:
1.重点:正确理解掌握古典概型及其概率公式.
2.难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
教法与学法:
1.教法选择:指导学生通过对现实生活中具体的概率问题的探究,发现一类事件的概率的计算公式,并能正确运用.
2.学法指导:在教师的指导下,学生分组互相讨论,并加以练习.
教学过程:
一、设置情境,引出概念
二、思维拓展,共同探究
三、例题详解,深化概念
四、归纳小结,课堂延展
教学设计说明
1.教材地位分析:本节课是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,起到承前启后的作用.
2.学生现实分析:学生已经学习了随机事件的概率,通过实例,已经了解随机事件的不确定性和频率的稳定性.了解了概率的意义,了解互斥事件及有限个互斥事件概率加法公式.另外,学生是在尚未学习排列组合的情况下学习概率的.
3. 在解决概率的计算上,教师鼓励学生尝试列表和画树状图,让学生感受求基本事件个数的一般方法,使学生直观的感受到对象的总数,而且还能使学生在列举的时候做到不重不漏,从而解决由于没有学习排列组合而学习概率这一教学困惑.在判断一个试验是否是古典概型时,教师可以设置一些问题让学生判断,加深对两个特点缺一不可的理解.
古典概型公开课教案 篇10
一、教材分析
本节课人教版普通高中课程标准实验教科书数学必修3第三章概率第二节古典概型的第一课时。古典概型是在随机事件的概率之后,几何概型之前进行教学的。古典概型是一种理想的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。而接下来要学习的几何概型与古典概型有很多相通之处,学好古典概型可以为学习几何概型奠定基础,起到了承前启后的作用。古典概型在高等数学中概率论中也占有相当重要的地位,为学生学习高等数学做好衔接和铺垫。
二、学情分析
认知分析:
学生已经了解概率的意义,掌握了概率的基本*质,知道了互斥事件和对立事件的概率公式,这三者形成了学生思维的“最近发展区”。此时学生们并没有学习排列组合的知识。随机事件的概率在教材中主要通过观察和试验的方法,得到一些事件的概率估计,学生的认知水平更多的停留在感*认识的层面,还未上升到理*认识的高度。
能力分析:
学生已经具备了一定的归纳、猜想能力,但数学的理*的思维能力和应用意识仍需提高。但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整,解决问题的能力还略显单薄。
情感分析:
由于本章开始的内容起点低,坡度小,与实际联系紧密,多数学生对本章的学习有一定的兴趣,心里有想好好学习的意愿和信心。
三、教学目标
在新课标让学生经历“学数学、做数学、用数学”的理念指导下,以教材为背景,我将本节课的教学目标分为以下三个方面:
知识与技能:
1。理解古典概型的概念
2。利用古典概型求解随机事件的概率
过程与方法:
在教学过程中,进一步发展学发现问题,分析问题,解决问题的能力;培养学生归纳、类比等合情推理能力;培养学生的应用能力与意识。
情感态度与价值观:
激发学生学习数学的热情,培养学生勇于探索,善于发现的创新思想;结合问题的现实意义,培养学生的合作精神。
四、教学重点与难点
重点:理解古典概型的概念及概率公式,并能简单应用。
难点:基本事件的理解。
对于本节课难点的确定我认真研读了教材和教参,开始确定了三个教学难点。结合自己的教学经验并同组教师进行探讨后,最后确定为一个:基本事件的理解。因为本节课只要能对基本事件理解到位,判断是否为古典概型,以及发现古典概型的概率公式就基本上都能迎刃而解了。对于难点的突破,我并没有要求学生一步到位,而把理解的过程贯穿在本节课的始终。采用的方法是先是体验,后了解,然后再体验,最后争取让学生达到理解的层次。
五、教法学法
教法:根据本节课的特点,采取引导发现与归纳概括相结合的教学方法,融入问题式教学。通过提出问题、分析问题、解决问题等教学过程一步步归纳概括出古典概型的概念及其概率公式,再通过具体问题的提出和解决,让学生体会到成功的喜悦,从而激发学生的学习兴趣,调动他们的主观能动能力。采用多媒体教学手段,增强直观*增大教学容量,力争提高课堂教学效率。
学法:首先应该给自己积极的心理暗示,数学是可以学好的,也是有乐趣的,更是有用的。在教师的引导下,认真观察思考,大胆尝试,以提高提出问题、分析问题、解决问题的能力。注重数学思想的提升,通过数学语言的组织表达,锻炼自己思维的严密*。合作探究,共同进步,体验成功的喜悦,培养合作意识和能力,为以后的发展打下良好的基础。
六、教学过程
1、聚焦课堂
通过实验和观察的方法,我们可以得到一些事件的概率估计。但这种方法耗时多,而且得到的仅是概率的近似值。在一些特殊情况下,我们需要寻找计算事件概率的通用方法。今天我们要学习的就是概率的一种特殊模型———古典概型。
2、明确目标
(1)理解基本事件的含义
(2)理解古典概型及其概率计算公式,解决一些简单的古典概型问题。3。问题驱动
那到底什么样的概率模型是古典概型呢?古典概型的概率又如何求解呢?为了弄清这两个问题,先让学生先考察两个试验,分析一下事件的构成。
(1)抛掷一枚质地均匀的硬*一次(2)抛掷一枚质地均匀的骰子一次
教师提出问题:以上两个试验的结果分别有哪些?这些结果具有哪些特点?把每个试验结果看成一个事件,它们都是随机事件吗?第二个试验中“出现偶数数点”可以用这些结果表示吗?这些随机试验结果出现的可能*相等吗?学生思考并讨论,结合教师提出的问题谈谈自己的看法。
设计意图:对于这两个试验,我并没有让学生分组动手实际*作,情形足够简单,背景足够熟悉,无需动手*作。大量的重复试验可能会导致学生变得茫然,觉得无聊,并不能真正的激发他们的学习兴趣趣,反而浪费了时间。数学中有的知识点或概念理解起来比较困难,不可能一蹴而就,先让学生体验,帮助学生感知基本事件的含义,并为基本事件的理解这一难点的突破做好铺垫,让学生体验基本事件的的定义和特点的同时,鼓励学生用自己的语言描述,提高学生的数学语言的组织能力和表达能力。
4、合作探究、成果展示、师生评价
师生互动中,得出基本事件的定义和特点(教师板书)
(过渡*语言)基本事件是我们解决古典概型的前提和基础,为了加深同学们对基本事件的理解,我们再来看两道例题。
例1、从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
学生*思考后回答,教师板书解题过程,强调书写的规范*。
基本事件为a??a,b?,b??a,c?,c??a,d?,d??b,c?,e??b,d?,f??c,d?(教师板书)例2。某人*击5*,命中了3*,试写出所有的基本事件(⊙表示命中,x表示未命中)
方法一:请同学们列举出所有基本事件(教师板书)(列举法)
方法二:教师简单介绍树状图(教师板书),并告知学生树状图也是列举法的一种表现形式。(树状图)
设计意图:在列举法学习中,增加一个例子,分别用树形状图与直接列举法展示思维过程,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。
通过思考抛钱币、掷骰子的试验和例1、2,让学生认真体会这些试验的共同特点,得出古典概型的定义。古典概型的定义(教师板书)
你能举例说明现实生活中一些古典概型的例子吗?
设计意图:通过举例,加强学生对古典概型的认识,让学生初步体会把一些实际问题转化成数学问题加以解决,培养学生的应用意识。
古典概型是最基本的概率模型,是高考的重点,在高等数学概率论中也占有相当重要的地位,在现实生活中也有着比较广泛的应用。学好古典概型是学习其它概型的基础。下面我们看几个问题,帮助大家深化一下对古典概型概念的理解。问题(1)问题(2)问题(3)问题(4)问题(5)
学生思考后交换意见,学生代表发言,其他同学评价补充。
设计意图:通过正、反两方面的例子,特别是举一些破坏了古典概型两个重要特征的例子,以突破古典概型识别的这一重要知识点,前两个问题还可以为以后学习几何概型埋下伏笔。
在解决前面的问题和理解古典概型的概念之后,再引导学生探究问题:例2中,所命中的三*中,恰好有2*连中的概率为多少?
学生先*思考,然后小组内相互交流,代表发言,其他同学评价补充。
基本事件总数为n的古典概型中,包含的基本事件数为m的随机事件a的概率是多少?学生概括总结出古典概型的概率计算公式:p(a)?事件a所含基本事件个数(教师板书)
基本事件总数
设计意图:考虑在学生原有的认知基础上,使学生逐步感受由特殊到一般的合情推理过程,让学生体验到认知的自然升华。在概率的计算上,鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。
过渡语言引出下面的例题与变式。
例3。单选题是标准化考试中常用的题型,一般是从a,b,c,d四个选项中选择一个正确*。如果考生掌握了考察的内容,他可以选择唯一正确的*。假设考生不会做,他随机的选择一个,问他答对的概率是多少?
变式:在标准化考试中既有单选题又有多选题,多选题是从a,b,c,d四个选项中选出所有正确的*,同学们可能有一种感觉,如果不知道正确,多选题更难猜对,这是为什么?
学生先*思考,然后小组内相互交流,合作探究,代表发言,其他同学评价补充。对于此变式的解题过程,教师板书并强调解题过程的规范*。
设计意图:在课本例题后增加一个变式训练,变式的基本事件为15个,暗示学生在基本事件较多的试验中,需用分类讨论的思想,才能补充不漏快速地写出所有基本事件。锻炼学生思维的严密,与严谨的治学态度,并再次感受列举出所有基本事件在解决古典概型问题的必要和重要。
5、拓展提升
练习1:有同学认为,同时抛掷两枚质地均匀的硬*一次看成一次试验,出现的结果有三种情况:全是正面,一正一反,全是反面。所以一次试验中的基本事件有三个,并且概率都是1。你认为他说的对吗?3
设计意图:这个练习可以检验学生基本事件的理解程度,根据学生的实际情况,决定是否进行动手试验。如果学生真的没有理解到位,那就必须进行动手进行试验了,下面的练习2就必须舍弃。原因有两点:
1。课上时间有限2。基本事件的理解这个难点不能突破,练习2存在的价值也就。
练习2:同时掷两个骰子,计算:
(1)一共有多少种不同的结果?(多少个基本事件)(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?(4)向上的点数之和是几的概率最大?此时的概率是多少?
请学生思考,小组交流后代表发言。
设计意图:不同思维的角度将古典概型中学生最容易错的忽视基本事件的“等可能*”暴露出来,以引起学生的注意,在教材的基础上增加最后一问,使学生对表格能有进一步的认识。本节课最后一次加深学生对基本事件的理解,再次尝试突破本节课的教学难点。
6、当堂反思:
师生共同总结本节课的内容,学生反思教学目标的完成情况,对于学习中的新问题课下可以多多思考,多多交流,积极找到解决问题的办法。
七、评价设计说明
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法。通过“八步流程”的教学模式,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,让学生体会成功的喜悦,来激发学生的学习兴趣,调动学生的主体能动*,让每一个学生充分地参与到学习活动中来。本节课以问题为纽带,在探究过程中,通过与学生的交流,注意其思想变化,进行恰当引导;通过观察课上练习和课后作业,课下个别谈话的方式,了解学生知识技能和学习方法的不足,用以指导今后的教学。
下一篇:返回列表