数学《梯形面积的计算》教案精编5篇

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“数学《梯形面积的计算》教案精编5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

五年级《梯形的面积》教案1

教学目标

1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观。

梯形面积计算公式的推导

教学设计

梯形面积计算公式的推导

教学目标:

理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。 通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。

教具准备:

三个大小完全一样的梯形。

教学过程:

一、复习:

1.平行四边形的面积公式是什。

用含有字母的式子表示稍复杂数量关系和计算公式 用含有字母的式子表示稍复杂数量关系和计算公式 教学内容 苏教版国标本四年级数学(下册)第108-109页。

2.梯形的面积和周长公式

1、梯形的周长公式:上底+下底+腰+腰,用字母表示:

2、面积公式

①梯形的面积公式:(上底+下底)x高÷2, 用字母表示:

②梯形的面积公式: 中位线x高,用字母表示:L·h。

③对角线互相垂直的梯形面积为:对角线x对角线÷2。

梯形平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。等腰梯形是一种特殊的梯形,其判定方法与等腰三角形判定方法类似。

梯形的面积教案2

教学内容:梯形面积的计算

教学目标:

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程:

一、复习引入:

1、复习:

同学们会计算哪些图形的面积?

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

二、探索解决问题办法,并尝试转化

1、引导学生提出解决问题方案

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化

刚才同学提出了用割补的方法、用拼摆的'方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察

同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

2、计算梯形面积

平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

3、推导梯形面积公式

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

用字母表示梯形面积公式

阅读教材,加深理解

四、应用公式计算梯形面积

1、基本练习:

计算下面梯形面积

2、教学例题

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题

4、抢答题

5、测量并计算

五、总结课堂

《梯形的面积》教案3

课开始,我出示了五个梯形,两个完全一样的任意梯形,一个从梯形上底的一个顶点作高且高落在梯形外面的梯形,一个直角梯形和一个等腰梯形,要求同学们说说"这些梯形的特征".

生1:梯形有上底,下底和高。

生2:梯形只有一组对边平行。

这时出现了学生已有的错误资源,部分学生的知识结构中梯形的特征和各部分的名称相混淆。我的教学策略是:观察黑板上的五个梯形,让学生们理性地感悟到:梯形只有一组对边平行是它的特征,给平行的一组对边起的名字是叫"底",因为这两条底的长短不同,所以一条底叫上底,另一条底叫下底。

接着,揭示本节课教学目标——梯形的面积计算。

师:谁已经知道了梯形的面积计算方法

生1:我是通过预习知道的,梯形的面积=(上底+下底)×高÷2.

师:这个梯形的面积公式表达的是什么意思 比如"÷2"表示什么意思

生2:我是这样想的,两个完全一样的三角形可以拼成一个平行四边形,那么,两个完全一样的梯形也可以拼成一个平行四边形,一个梯形的面积是其中的一半,所以要"÷2".师:哪位同学上来拼拼看。(只有一会儿的冷场,有好几个同学举手,我指定一个女同学上黑板拼,她选择两个完全一样的梯形开始拼。第一下拼没成功,下面有同学提醒她倒过来拼,第二下倒过来拼也没成功,下面有同学提醒她要转过来,第三下成功了!)

师:(拿出另外一个和黑板上完全一样直角梯形)谁再上黑板来拼,也成一个平行四边形 (指定一个男同学上黑板拼,比较顺利,两下就成功了。)

师:观察拼成的平行四边形,和梯形相比较,你知道了什么

生3:它们的高是一样的,梯形的上底和下底合起来是平行四边形的底。(我又让几个同学说说他们的发现,并上黑板比比划划)

师:(拿出另外一个和黑板上完全一样一个从梯形上底的一个顶点作高且高落在梯形外面的梯形)哪个同学上来一下就拼成一个平行四边形

生4:(他接过我手中的梯形,看看有转了一下,放在黑板上同样的梯形旁就拼成了一个平行四边形)我是看它的上底和下底,只要上底和下底拼在一起就成了。

师:(拿出一个任意的梯形和黑板上不一样的梯形)谁也能和刚才的那位同学一样,一下就可以拼成一个平行四边形

一下用两个完全一样的梯形拼成一个平行四边形,对小学生来说有一定的挑战力,况且已有成功的前例,愿意上台表演的同学肯定多。而这时用"一个任意的梯形和黑板上不一样的梯形"去让学生拼,以达到加深对"用两个完全一样的梯形才可以拼成平行四边形"的理解。

生6:(举手的人更多了,教师指定一个学生上黑板)一下没成功,二下也没成功。4师:谁再来拼

生7:一下没成功,二下也没成功(下面有同学说,两个梯形不一样拼不成的),这位同学回到自己的座位上。

师:(这时还有一位同学高高举着手)你能 (他点点头)上来拼。

生8:(一下没成功,二下也没成功,……)真的不行!

然后,我引导学生们总结梯形面积的计算方法,并穿插了一道求梯形面积的练习题。想培养学生的求异思维,因此让学生们思考推导梯形面积的另外方法,(冷场好久,没人举手),我在电脑里演示了"沿梯形的中位线剪开,旋转平移拼成一个平行四边形".到此,我并没有强求学生们继续思考其他的推导梯形面积的方法,而是转入巩固练习的教学环节。

既然,学生没有其它方法推导梯形的面积公式,我认为,不必强求他们一定要去探究出其它推导方法。这里我演示"沿梯形的中位线剪开,旋转平移拼成一个平行四边形"一种推导方法,目的是用他人的思维去影响学生们的思维。

《梯形的面积》教学反思4

教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:

一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。

三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。

介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。

应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。

五年级《梯形的面积》教案5

教学目标:

1. 使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2. 使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3. 培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点:

理解梯形面积的计算方法,正确计算梯形的面积。

教学难点:

梯形面积计算方法的推导过程。

教学准备:

多媒体课件

教学过程:

一. 复习引入。

1. 同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

2. 计算下面图形的面积。(单位:厘米)

3. 我们先看第一个图形,它的面积是多少?(300平方厘米)

你是怎样计算的?(2015=300)

你的根据是什么?(平行四边形的面积=底高)

你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

4. 那么第二个图形的面积是多少呢?(36平方厘米)

你是怎样计算的?(1262=36)

你的根据是什么?(三角形的面积=底高2)

你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180o,再沿边平移上去,这样就拼成了一个平行四边形。)

5. 出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

二. 新课传授。

(一)面积计算方法的推导过程。

1. 今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

你怎么知道它是梯形?(只有一组对边平行)

2. 提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

3. 学生动手操作,分别展示成果。

(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4. 我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5. 你是怎么得出这个规律的?

6. 揭示规律并板书:梯形面积=(上底+下底)高2

你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)

现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h2)

7. 经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?

三. 巩固练习。

1. 找出梯形的上底、下底和高并计算面积。(单位:厘米)

2. 量出自己准备的梯形的上底、下底、高,求出它的面积。

从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?

四、课堂总结。

1. 这节课你学到了什么?

2. 你还有什么样的问题吗?

20 6725
");