《用字母表示数》教案精编4篇

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《用字母表示数》教案精编4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《用字母表示数》教学设计1

教学内容:

教科书第47~48页,练习十第4~8题。

教学目标:

1.在理解数量关系的基础上,会用含有字母的式子表示数量。

2.在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值。

3.培养学生的抽象思维能力、归纳概括能力。

教学重点:

用一个含有字母的式子表示数量。

教学难点:

理解用含有字母的式子表示的数量的意义,体会用含有字母的式子表示数量的简洁性。

教学过程:

一、导入新课

师:请看一看,你们的数学课本是多少钱?如果要买一本数学课本和《十分钟掌控课堂》一共要多少钱?

学生列式:+=

如果不知道《十分钟掌控课堂》的价钱,怎么办?能否用一个字母表示?

现在谁能说出一本数学书和《十分钟掌控课堂》一共要多少钱?

再请学生回答:+x表示的是什么?

师:这个含有字母的式子也能表示数量,今天我们就来探讨这个问题。

板书课题:用含有字母的式子表示数量。

二、教学新课

1.学习例4第(1)题。

师:如果我告诉你们,我比XX大20岁,请算一算,X→←X同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。随着学生回答,教师板书如下:

X的年龄(岁)老师的年龄(岁)

11+20=21

22+20=22

请一名学生在黑板上接着写下去,其他学生在草稿本上写。

学生在写的过程中感到厌烦。

师:求老师岁数的问题提完了吗?(没有)为什么?

学生会说因为XX在不断地长大,XX的岁数每增加一岁,老师的岁数也增加一岁。

师:正因为我们的问题还没提完,所以还应该在这些算式后面打上省略号。

师:虽然XX和老师的岁数都在变化,但是什么没有变?(老师比XX大20岁)

师:我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的岁数呢?

如果字母a表示XX的岁数,那么老师的岁数就是a+20(用其他字母表示也可以)。

在XX和老师的岁数下面接着板书:a与a+20。

师:从a+20这个式子里,你们知道些什么信息?

学生同桌议论或小组讨论,然后交流汇报:

a+20既表明了老师的岁数,又表明了“老师比XX大20岁”这个数量关系,所以,我们只要知道XX的岁数a,就能用这个数量关系算出老师的岁数。(注意:知道老师的岁数也能用这个数量关系算出XX的岁数。)

师:对,只要知道了XX任意一个岁数,就可以求出老师的岁数,我们可以试一试。如果XX7岁入学,老师几岁?

学生回答,教师板书:当a=7时,a+20=7+20=27(岁)

师:当XX19岁考入大学,老师几岁?

学生回答,教师板书:当a=19时,a+20=19+20=39(岁)

师:请同学们思考:如果用字母b表示老师的岁数,那么XX岁数怎么表示呢?

2.教学例4第(2)题。

“嫦娥二号”于2010年10月1日18时59分57秒在西昌卫星发射中心发射升空,并获得了圆满成功。这说明了什么?

出示:在月球上,人能举起物体的质量是地面上的6倍。

读题,引导学生按下面的过程自己推算,并填写下表。

师:这里的x表示什么?你是怎样理解6x的?

师:那么课本插图中的小朋友在月球上能举起的质量是多少?

学生计算后交流,教师板书:6x=6×15=90(kg)

师:如果用字母m表示在月球上能举起的质量,那地球上举起的质量怎么表示?

让学生看课本第47~48页,再想一想第(1)题、第(2)题中的字母分别可以表示哪些数?

师:但是要注意的是人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。

3.应用所学知识解决实际问题。

师:成年男子与女子的标准体重通常可以用下面的式子表示,身高用厘米数,体重用千克数。出示:

成年男子的标准体重=身高-105

成年女子的标准体重=身高-110

用含有字母的式子表示成年男子或成年女子的标准体重。

教师告诉学生自己的身高,让学生选择一个式子,算出教师的标准体重,再告诉学生教师的实际体重,与计算结果比较,评价教师的实际体重是否符合标准。(教师提示:与标准体重相差2千克之内都属于正常范围)

师:从这几个问题可以看出,用字母表示一些不确定的数量,可以很方便地帮助我们根据实际情况解决问题。

三、巩固练习

1.练习十第4题。(填写在课本上,独立完成后集体核对)

2.练习十第5题。(先独立思考,再填写在课本上,教师巡视指导有困难的学生,完成后交流)

3.练习十第8题。先同桌互相说出三小题中字母或式子所表示的含义,再全班交流。

4.机动练习:练习册32页第八、第十题。

四、课堂小结

五、作业:根据身高计算出爸爸妈妈的标准体重,然后和实际体重比较,然后对爸爸妈妈提些建议!

用字母表示数教学设计2

教学目标:

1、通过在探究活动让学生初步理解用字母表示数的方法。

2、初步会用含有字母的式子表示简单的数量、数量关系和计算公式,并能根据字母所取的值口头求简单的含有字母的式子的值。

3、学生在完整地经历把实际问题用含有字母的式子表达的抽象过程中,进一步体会用字母表示数的简洁与便利,发展学生的符号感,进一步引发学生的数学思考。

4、联系生活实际,让学生在运用简单符号进行表达和交流的过程中,感受数学表达方式的严谨性、概括性及简洁性,从而增强学生进一步产生对数学的好奇心求知欲,进而形成稳定的数学学习兴趣。

教学准备:

教学课件

教学过程:

一、导入

1、我们先来看一首儿歌,自己读一读。

(1)你能接着说下去吗?(指名说2个,并出示课件)

(2)还能接着说下去吗?能说完吗?

(3)不过,老师就有个办法只用一句话就能数出所有的青蛙来?你们想知道吗?

2、不要急,在今天这节课后,你也能办到的。有信心学好吗?

二、新授

其实在我们的生活中像这样数不完的例子还有很多呢!我们一起来看看。

1、例1(课件出示1个用小棒摆成的三角形)

(1)摆1个这样的三角形需要几根小棒?

(2)摆2个这样的三角形呢?可以怎样列式?

(3)你能接着往下说吗?

(4)摆1000个呢?摆10000个呢?

(5)如果用字母a表示三角形的个数,那摆a个三角形需要几根小棒?

(6)为什么用a×3?

(7)这里的a表示什么?a×3呢?

(8)也就是说不管摆几个三角形,小棒根数总是三角形个数的3倍。

(9)a个三角形,那究竟是几个三角形呢?这里的a可以表示哪些数?可以是小数吗?(我觉得这里应该让孩子们自己讨论下会比较好)

怎么样,用一句含有字母的话就把咱们数不完的事情给弄清楚了。看来字母可真神奇呀,字母的魅力还不止这些呢,我们接着看!

2、例2(出示例题的全部三个问题条件)

(1)自己看题目,比较这三个问题有什么共同点?(这里还是加上“写出数量关系”比较好)

(2)所以该怎样列式?

(3)合唱组的人数是(24+X),这里的24表示什么?X呢?那24+X就表示?

(4)根据写出的加法算式,书法组一共有多少人呢?舞蹈组呢?合唱组呢?

(5)如果X=10,合唱组有多少人?X=14呢?

(6)请同学们思考下,这里的字母X除了可以表示10或14,还可以表示其他的数吗?

一个字母能表示这么多的数,简直太神奇了吧!接着体会它的奇妙之处!

3、习题3

(1)从这幅图中你得到哪些信息?

(2)为什么用两个不同的字母表示?

(3)独立填在自己的书上。

做对了吗?太了不起了,给自己一个鼓励的掌声吧!但高兴的同时可别忘了我们的知识哟!

4、例3

(1)自己读题。大家还记得正方形的周长和面积公式吗?(板书)

(2)如果用字母a表示边长,C表示周长,S表示面积。你能用字母写出正方形的周长和面积公式吗?自己尝试着写,组织交流。

(3)文字公式和字母公式你比较喜欢哪个?为什么?

(4)其实这样的写法还不算简单,还有更简单的写法呢!想知道吗?

翻看书106,看看还有怎样简便的写法。

交流,并完整字母公式、

(5)师生共同小结书上的3点简写方法,并板书。

三、巩固

小朋友们听明白了吗?光说不练假把式,我们就一起练练吧!

四、小结

(1)这节课我们学习了什么知识?

(2)现在你有办法说完整这首儿歌吗?

《字母表示数》教学设计3

教学目标

1、让学生在现实情境中理解和掌握用字母表示数的方法,会用含有字母的式子表示简单的数量、数量关系与计算公式,学会含有字母的乘法算式的简便写法。

2、让学生经历把实际问题用含有字母的式子进行表达的抽象过程,进一步体会数学的抽象性、概括性与简洁性,发展符号感。

3、让学生在用字母表示数中感受数学的简洁美,增强对数学学习的好奇心。

教学重点理解用字母表示数的意义,会用含有字母的式子表示数量。

教学难点能用含有字母的式子表示数量,体会字母表示数的优越性。

教学过程

一、创设情境,导入新课

1、课件依次出示:麦当劳标志、路标、CCTV、鞋子尺码。

提问:在刚才的几幅图片中,它们有什么共同的地方?(都含有字母)

2、课件出示:2、4、6、a、10。

提问:你能猜到这里的a是几?

小结:根据这行数的排列规律,我们能看出字母a表示的是一个特定的数。(板书:特定的数)

师:今天在们就试着从数学的角度研究字母,让我们的探索从一个大家都玩过的游戏开始吧!

二、自主探究,领悟新知 1、用字母表示数。

课件依次出现:1个三角形、2个三角形、3个三角形、4个三角形

(1)指名说说三角形的个数和所用小棒的根数(根据学生回答,老师依次板书)

(2)提问:如果让你接着摆下去,要摆出多少个三角形,要用多少根小棒了?(师相应板书)

(3)追问:照这样下去,摆的完,说的完吗?能不能用一个式子来代表上面所有的式子呢?

引导学生说出用字母表示的式子:a×3。

(4)提问:这里的a表示什么意思?3表示什么意思?a×3呢?

字母a可以表示哪些数?(根据学生回答,教师相应板书:变化的数)

(5)提问:除了用a表示三角形的个数,还可以用其他字母吗?

(6)小结:用字母不仅可以表示特定的数,更重要、更优越的是用字母还可以表示变化的数。

2、用字母表示数量关系。

玩猜年龄的游戏:老师和一名学生的年龄用字母表示

(1)(板书:b b+14)猜一猜: 这里的b、b+14分别表示谁的岁数?

请学生猜一猜,并说明猜测理由。教师相应板书:学生 老师

(2)提问:根据你的经验这里的b可以代表哪些具体的数?

反问:这里的数可以是500么?为什么?

(3)师:看来这个字母b啊在表示年龄时是有一定的限制的,所以字母在不同的情况下表示的范围是不同的。(板书:一定限制的数)看到这个式子你能联想到什么啊?比如(课件出示:当学生2岁时,老师的岁数是多少?)

学生各自举例说说,并算一算当b=18时呢?

(4)换个角度来看:如果用字母n表示老师的岁数(板书:n),那学生的岁数又该怎么表示呢?(引导学生认识到可根据年龄关系来判断)

根据学生的回答,老师板书:n—18

(5)小结:含有字母的式子不仅能表示数,还可以表示数量关系。

3、用字母表示公式。

(1)(出示一个正方形)复习正方形的周长公式和面积公式,指名回答,教师相应板书。

(2)课件出示:正方形的边长用字母a表示,周长用c表示,面积用s表示,你能用字母表示出正方形的周长与面积的计算公式么?生答,师板书:C=a×4 S=a×a

提问:这样表示与用文字叙述比较,哪种更简单?

(3)学生自学含有字母的乘法式子的简写方式。(数学书第106页的内容)

结合正方形的字母公式说说含有字母式子的简写规则。

(4)试一试:做“想想做做”。

(5)做判断题,强化认识

强调以下几点。

①数和字母相乘时的乘号可以写成小圆点,通常都省略不写,但数字必须写在字母的前面。字母和字母相乘时,乘号也可以写成小圆点,通常也省略不写。

②相同字母相乘,可以写成平方的形式。

③在含有字幕的式子里,加号、减号、除号都不能省略,如24+x不能写成24x

④两个1与任何字母相乘,通常省略不写。

(4)引导学生简写正方形周长与面积的公式,并完成书上“想想做做”第1题。

(5)小结

三、巩固运用,拓展延伸

出示快乐广场:(图略)说说:我想去哪儿?要走的路程是多少米?

《用字母表示数》教学设计4

教学内容:

课本第52~53页例1、例2及相应的“做一做”。

教学目标:

1.使学生认识用字母表示数的意义和作用,并能用含有字母的式子表示简单的数量关系。

2.在具体情境中感受用字母表示数的必要性和优越性,渗透符号化思想。

3.在解决问题中体会数学与生活的联系,体会代数符号表示的简洁性,从而进一步感受学习数学的价值。

教学重点:

学会用字母表示数。

教学难点:

理解字母表示数既可表示数量,也可表示数量关系。

教学准备:

有关的课件。

教学过程:

一、谈话导入。

同学们,当你的妈妈又在你的耳边唠叨时,你是否有过这样的回答:“妈,你这都说过n遍了!”还有,你跟你的同学炫耀时说过这样的话吗?“这游戏我n年前就已经玩过了!”

那这里的n表示多少呢?

它是一个不能确定的数。今天这节课我们就来学习用字母表示数。(板书课题:用字母表示数)

二、展示情境,引导探究

(一)出示教材例1的情境图。

讲讲从情境图中你能得到哪些信息?

(二)出示表格。

小红的年龄/岁

爸爸的年龄/岁

1

5

10

……

……

1.将表格补充完整(列出算式和求出结果)。

2.表格中的省略号表示什么意思?

3.你能通过一个简明的式子,表示出任何一年爸爸的年龄吗(用字母 表示小红的年龄)?

4.交流式子,进行比较。

5.想一想, 可以是哪些数?可以是200吗?

(三)代入解题

设问:当小红的年龄 时,爸爸的年龄是多少?

三、自主学习,获取新知

(一)出示教材例2的情境图。

(二)出示问题。

1.将表格补充完整。

在地球上能举起

物体的质量/kg

在月球上能举起

物体的质量/kg

1

5

10

……

……

2.你能用含有字母的式子表示出人在月球上能举起的质量吗?

3.式子中的字母可以表示哪些数?

(1)出示如下情境图。

从图中你了解到哪些信息?请将你的式子用不同的方法表示出来。

(2)求出例2情境图中小朋友在月球上能举起的质量是多少?

(3)完成例2“做一做”。

四、应用新知,巩固拓展

(一)看图填一填。

(二)算一算。

小红买了9本笔记本,每本 元,共需要多少元?(用含有字母的式子表示)

如果每本笔记本8元,小红付钱后找回了28元,那她总共付了多少元?

如果她付出相同的钱,却只找回了1元,那么笔记本一本多少元呢?

(三)解决问题。

客车的速度是 千米/时,货车的速度是65千米/时,两车同时从甲、乙两地相对开出,3小时后相遇。

(1)用含有字母的式子表示甲、乙两地之间的距离;

(2)当 时,甲、乙两地之间的距离是多少千米?

20 466497
");