因式分解教案【推荐4篇】
【导言】此例“因式分解教案【推荐4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
因式分解优秀教案【第一篇】
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) =( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解优秀教案【第二篇】
教学目标:
1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)
教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。什么叫因式分解?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
说明 (1)因式分解与整式乘法是相反方向的变形。
例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的。方法叫做提公因式法。例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。
探究交流
下列变形是否是因式分解?为什么?
(1)3x2y—xy+y=y(3x2—x); (2)x2—2x+3=(x—1)2+2;
(3)x2y2+2xy—1=(xy+1)(xy—1); (4)xn(x2—x+1)=xn+2—xn+1+xn。
典例剖析 师生互动
例1 用提公因式法将下列各式因式分解。
(1) —x3z+x4y; (2) 3x(a—b)+2y(b—a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b—a化成—(a—b),然后再提取公因式。
小结 运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解。
(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a—b)n=(b—a)n(n为偶数)。
(3)因式分解最后如果有同底数幂,要写成幂的形式。
学生做一做 把下列各式分解因式。
(1) (2a+b)(2a—3b)+(2a+5b)(2a+b) ;(2) 4p(1—q)3+2(q—1)2
知识点3 公式法
(1)平方差公式:a2—b2=(a+b)(a—b)。即两个数的平方差,等于这两个数的和与这个数的差的积。例如:4x2—9=(2x)2—32=(2x+3)(2x—3)。
(2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。例如:4x2—12xy+9y2=(2x)2—2·2x·3y+(3y)2=(2x—3y)2。
探究交流
下列变形是否正确?为什么?
(1)x2—3y2=(x+3y)(x—3y);(2)4x2—6xy+9y2=(2x—3y)2;(3)x2—2x—1=(x—1)2。
例2 把下列各式分解因式。
(1) (a+b)2—4a2;(2)1—10x+25x2;(3)(m+n)2—6(m+n)+9。
分析:本题旨在考查用完全平方公式分解因式。
学生做一做 把下列各式分解因式。
(1)(x2+4)2—2(x2+4)+1; (2)(x+y)2—4(x+y—1)。
综合运用
例3 分解因式。
(1)x3—2x2+x; (2) x2(x—y)+y2(y—x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式。
小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式。 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止。
探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k= 。
分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差)。
学生做一做 若x2+(k+3)x+9是完全平方式,则k= 。
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题。
各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。
自我评价 知识巩固
1、若x2+2(m—3)x+16是完全平方式,则m的值等于( )
A、3 B、—5 C、7 D、7或—1
2、若(2x)n—81=(4x2+9)(2x+3)(2x—3),则n的值是( )
A、2 B、4 C、6 D、8
3、分解因式:4x2—9y2= 。
4、已知x—y=1,xy=2,求x3y—2x2y2+xy3的值。
5、把多项式1—x2+2xy—y2分解因式
思考题 分解因式(x4+x2—4)(x4+x2+3)+10。
初二数学因式分解教案【第三篇】
1、 should
should是情态动词,意为“应当,应该”。表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。其主要用法有:
(1)表示责任和义务,意为“应该”。
You should take your teacher’s advice.你应该听从你老师的建议。
You shouldn’t be late for class.你不应该上课迟到。
(2)表示推断,意为“可能,该”。
The train should have already left.火车可能已经离开了。
(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to更加委婉。
You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。
2、 need
(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。
sb./sth.需要某人/某物
need+ to do sth.需要做某事
doing需要(被)做
He needs some help.他需要些帮助。
You didn’t need to come so early.你不必来这么早。
The flowers need watering.花需要浇水。
(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。
He need not go at once.他不必立刻走。
Need he go at once?他必须立刻走吗?
用must提问的句子,其否定回答常用needn’t。
— Must he hand in his homework this morning?
他必须今天上午交作业吗?
— No, he needn’t.不,不必了。
拓展
need to do和need doing的辨析:
need to do sth.意为“需要干某事”,是自己主动去干某事;need doing其主语是物,含有被动的意义,相当于need to be done。
The student needs to do his homework as soon as he gets home.
那个学生需要一回家就做家庭作业。
My computer needs repairing.我的电脑需要修理。
3、 until
until意为“直到…”,有下列用法:
(1)作介词,后接时间名词,在句中作时间状语。
(2)作连词,后接从句,引导时间状语从句。
We waited until the rain stopped.我们等到雨停了。
She stayed there until 9 o’clock.她一直等到9点钟。
拓展
(1)until用在肯定句中,多与持续性的动词连用表示某动作持续到某时,until相当于till。如stand、wait、stay等,表示主句动作的终止时间。
(2)until可用于否定句中,即not…until…意为“直到…才”,常与非延续性动词连用。如open、start、leave、arrive等,强调主句动作开始时间。
The child didn’t go to bed until his father came back.
直到父亲回来,那个孩子才睡觉。
You’d better wait until the rain stops.你等到雨停。
因式分解优秀教案【第四篇】
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解
4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2πR+2πr=2π(R+r) 因式分解
2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程。
分解因式要注意以下几点: (1).分解的对象必须是多项式。
(2).分解的结果一定是几个整式的乘积的形式。 (3).要分解到不能分解为止。
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
试一试把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例题讲解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知识应用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值。 5、1993-199能被200整除吗?还能被哪些整数整除?
四、拓展应用
1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+2004被2005整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。
五、课堂小结:今天你对因式分解又有哪些新的认识?
上一篇:大班健康教案【优质5篇】
下一篇:中班区域活动教案(精选4篇)