分数除法教案汇总4篇
【导言】此例“分数除法教案汇总4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
分数除法教案【第一篇】
1、分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)
2、口算下面各题
36
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:1003=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?3003=100(克)
B、300克水果糖,每盒100克,可以装几盒?300100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
3=(千克)3=(千克)3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28做一做
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、2==,每份就是2个。
B、2==,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
分数除法教案【第二篇】
教学内容:
五年级下册教科书第65—66页。
教学目标:
1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2.在探究过程中,培养学生观察、比较、归纳等探究的能力。
3.体会知识来源于实际生活的需要,激发学习数学的积极性。
教学重点:
经历探究过程,理解和掌握分数与除法的关系。
教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
教材分析:
《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。
本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。
教具学具:
课件,模型。
教学设计
一、导入
师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?
生:月饼。
师:你们的课外知识真丰富,你们喜欢吃月饼吗?
生:喜欢。
师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?
生:2块,6÷3=2(块)。(板书)
师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?
生:块,1÷2=(块)。(板书)
师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?
师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的`问题了,不用学具直接说出5除于7等于多少?
生:七分之五。
师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?
生:可以用分数表示。
师:在表示整数除法的商时,用谁作分母?用谁做分子?
生:用被除数作分子,除数作分母。
师:那么分数与除法有什么样的关系呢?谁能用语言概括下?
生:被除数除以除数等于除数分之被除数。
师:你表达得这么清晰流畅,了不起!
师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?
生:a÷b= a/b(b≠0)(板书)
师:这个关系式里每个数的范围要注意什么?
生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。
师:想一想分数与除法有哪些联系和区别?
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)
二、巩固练习
师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?
用分数表示下面各式的商。
(1)3÷2 =()
(2)2÷9 =()
(3)7÷8 =()
(4)5÷12 =()
(5)31÷5 =()
(6)m÷n =()n≠0
2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖
的( )是相等的
三、课堂小结
说说你的收获是什么?重点说说分数与除法的关系。
结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!
四、作业布置
练习十二第1,3题。
板书设计
分数与除法
被除数÷除数=被除数/除数
a÷b= a/b(b≠0)
教学反思
这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
分数除法教案【第三篇】
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的。3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
课后感受
本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。
分数除法教案【第四篇】
教学内容:
分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。
教学目标:
使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。
教学重点:
分数除以整数的计算方法 。
教学难点:
除转化为乘和道理。
教学过程:
一、 复习
1.口答下面各题的倒数。
2 、1、
2.根据一个乘法算式写出两个除法算式。
3×15=45 125×8=1000
二、 新授
揭示课题:分数除法
1.分数除法的意义和计算法则
(1) 出示25页的月饼图。
(2) 引导学生回答问题
1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?
板书:×4=2 (块)
2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?
板书:2÷4=(块)
3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?
板书:2÷=4(人)
(3) 让学生观察比较(板书的)3个式子的已知数和得数。
明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。
第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。
小结:分数除法的意义。
强调:分数除法的意义和整数除法的意义相同。
(4) 练习:教科书第25页"做一做。
2.分数除以整数的计算方法。
(1)出示例子:把米铁丝平均分成2段,每段长多少米?
(2)启发学生分析数量关系。(画线段图表示)
米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。
板书 解法1:÷2==(米)
使学生明白。
1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。
2)这种计算方法有限制条件的,分子必须能被整数整除。
还有其它的解法吗?
引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。
板书 解法2:÷2=×=(米)
(3) 小结:分数除以整数的计算方法。
板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。
强调。
1)被除数不变;
2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;
3)0不能做除数,0没有倒数;
4)这种计算方法在一般情况下都可以进行,应用普遍。
5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。
三、 巩固练习
练习七第1、3题。
四、 作业
练习七第2、4、5、6题
五、 课外思考
练习七第7题。
上一篇:打电话教案3篇