数学教案梯形的面积计算(精编4篇)
【前言导读】这篇优秀教案“数学教案梯形的面积计算(精编4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《梯形的面积》教学反思1
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在 设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。
小学五年级上册数学《梯形面积的计算》教案2
《梯形面积的计算》是人教版数学第九册内容。听过学区本节公开课,确有可借鉴之处,同时也存在一些问题,值得深思。
教学成功之处主要体现在以下几点:
一、首尾照应实现数学价值。
由实际事件“帮工人师傅计算花坛面积”引出探究主题——梯形面积的计算,得出结论后,运用公式解决这一实践问题。教师创造性使用教材,改变例题为学生身边常见事物,始终将数学置于生活背景之中,充分体现数学“来源于生活,回归于生活”的理念,实现数学的应用价值。
二、转化推理蕴涵思想方法。
“梯形面积的计算”是在平行四边形、三角形面积计算的学习基础之上提出的。教师首先请学生回忆了三角形面积的推导方法,使学生意识到梯形也可与学过的其他图形产生联系,从而计算出面积。让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想,也落实了“数学要在学生已有的知识背景下学习”这一教学理念。
三、合作探究促进创造思维。
在学生独立思考、自主探索的基础上组织合作交流是本节课的重点环节。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”面对同样的问题,学生会出现不同的思维方式。利用梯形与其他图形的联系求梯形面积,学生有着不同的做法:有的利用等腰梯形、有的利用直角梯形、有的利用普通梯形,有的拼成了长方形,有的拼成普通的平行四边形;有的把梯形分割为平行四边形与三角形……自由的探讨交流带来的是思维的充分扩展,是质的飞跃。在独立思考的基础上进行合作交流,能满足学生展示自我的心理需要;通过师生互动、生生互动,促使学生从不同角度去思考问题,对自己和他人的观点进行反思与批判,在各种观点相互碰撞的过程中迸发创造性思维的火花。
考问教学细节,又发现一些问题:
镜头一:利用公式求梯形面积的练习中,一同学列式为(+2)×8÷2,而原图中,为下底,2为上底。教师强调:“这样做不对,应为上底加下底,也就是(2+)”。
“上底加下底”与“下底加上底”,对于求梯形面积而言,究竟有何区别呢?教师本不宜如此“循规蹈矩、照本宣科”。倘若该同学反问:“把这个梯形倒过来,面积是不变的。那么我的算式是否正确?”教师该如何应答?可惜,没有一个同学提出质疑。教师强依公式而下的结论显然并不合适,为什么却无人指出?“公式是不可不依的”、“老师的结论是不可推翻的”……“一言堂”教学的印痕桎梏着师生的思维,使“探究”有时不免流于形式。对学习而言,这是可怕的。“学起于思,思起于疑。”“学贵有疑,疑则进也。”要真正发挥学生的主体作用,必须鼓励学生善疑、敢疑。当然,这需要教师的能力与勇气——自我质疑的能力、承认错误的勇气。
镜头二:学生在练习本上完成了习题,在教师示意下走上讲台,利用投影把答案展示给大家。第一次展示,同学们趣味盎然;二次、三次过后,变得兴味索然。几声简单的“对”、“同意”,使课堂气氛趋于沉闷。
作为教学辅助手段,多媒体愈来愈受到师生青睐。但是,多媒体的运用必须把握好“度”。不是所有环节都适合使用多媒体,不是任何步骤的实施都需要多媒体。学生练习的是几道非常简单的基础性题目,正确率相当高,教师巡视时也能发现这点,那么,以口答的形式订正不仅简单明了,更节省了宝贵的课堂时间。对于稍有难度的题目,则可以利用多媒体展示的方式,组织学生进行短时间交流,使学生知其然亦知其所以然,而不是简单地回答“对”或者“错”。
《梯形的面积》教案3
课开始,我出示了五个梯形,两个完全一样的任意梯形,一个从梯形上底的一个顶点作高且高落在梯形外面的梯形,一个直角梯形和一个等腰梯形,要求同学们说说"这些梯形的特征".
生1:梯形有上底,下底和高。
生2:梯形只有一组对边平行。
这时出现了学生已有的错误资源,部分学生的知识结构中梯形的特征和各部分的名称相混淆。我的教学策略是:观察黑板上的五个梯形,让学生们理性地感悟到:梯形只有一组对边平行是它的特征,给平行的一组对边起的名字是叫"底",因为这两条底的长短不同,所以一条底叫上底,另一条底叫下底。
接着,揭示本节课教学目标——梯形的面积计算。
师:谁已经知道了梯形的面积计算方法
生1:我是通过预习知道的,梯形的面积=(上底+下底)×高÷2.
师:这个梯形的面积公式表达的是什么意思 比如"÷2"表示什么意思
生2:我是这样想的,两个完全一样的三角形可以拼成一个平行四边形,那么,两个完全一样的梯形也可以拼成一个平行四边形,一个梯形的面积是其中的一半,所以要"÷2".师:哪位同学上来拼拼看。(只有一会儿的冷场,有好几个同学举手,我指定一个女同学上黑板拼,她选择两个完全一样的梯形开始拼。第一下拼没成功,下面有同学提醒她倒过来拼,第二下倒过来拼也没成功,下面有同学提醒她要转过来,第三下成功了!)
师:(拿出另外一个和黑板上完全一样直角梯形)谁再上黑板来拼,也成一个平行四边形 (指定一个男同学上黑板拼,比较顺利,两下就成功了。)
师:观察拼成的平行四边形,和梯形相比较,你知道了什么
生3:它们的高是一样的,梯形的上底和下底合起来是平行四边形的底。(我又让几个同学说说他们的发现,并上黑板比比划划)
师:(拿出另外一个和黑板上完全一样一个从梯形上底的一个顶点作高且高落在梯形外面的梯形)哪个同学上来一下就拼成一个平行四边形
生4:(他接过我手中的梯形,看看有转了一下,放在黑板上同样的梯形旁就拼成了一个平行四边形)我是看它的上底和下底,只要上底和下底拼在一起就成了。
师:(拿出一个任意的梯形和黑板上不一样的梯形)谁也能和刚才的那位同学一样,一下就可以拼成一个平行四边形
一下用两个完全一样的梯形拼成一个平行四边形,对小学生来说有一定的挑战力,况且已有成功的前例,愿意上台表演的同学肯定多。而这时用"一个任意的梯形和黑板上不一样的梯形"去让学生拼,以达到加深对"用两个完全一样的梯形才可以拼成平行四边形"的理解。
生6:(举手的人更多了,教师指定一个学生上黑板)一下没成功,二下也没成功。4师:谁再来拼
生7:一下没成功,二下也没成功(下面有同学说,两个梯形不一样拼不成的),这位同学回到自己的座位上。
师:(这时还有一位同学高高举着手)你能 (他点点头)上来拼。
生8:(一下没成功,二下也没成功,……)真的不行!
然后,我引导学生们总结梯形面积的计算方法,并穿插了一道求梯形面积的练习题。想培养学生的求异思维,因此让学生们思考推导梯形面积的另外方法,(冷场好久,没人举手),我在电脑里演示了"沿梯形的中位线剪开,旋转平移拼成一个平行四边形".到此,我并没有强求学生们继续思考其他的推导梯形面积的方法,而是转入巩固练习的教学环节。
既然,学生没有其它方法推导梯形的面积公式,我认为,不必强求他们一定要去探究出其它推导方法。这里我演示"沿梯形的中位线剪开,旋转平移拼成一个平行四边形"一种推导方法,目的是用他人的思维去影响学生们的思维。
小学五年级上册数学《梯形面积的计算》教案4
教学目标: 1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结。 (略)
上一篇:众数与中位数数学教案(通用4篇)
下一篇:数学教学教案精编4篇