一个数除以小数教学反思【优质4篇】
【前言导读】此篇优秀教学范文“一个数除以小数教学反思【优质4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
一个数除以小数教学反思【第一篇】
一个数除以小数是人教版五年级上册第三单元的内容。是在学生学习过除数是整数的除法后进行的。除法的学习由口算过渡到笔算,在三年级学生已经接触到了,不过所认识的都是除数是一位数的除法,学生基本上明白了要怎样去操作,但是到了五年级学生学习小数除数时,他们往往都存在着不同程度的疑惑,主要是小数点的位置把握不准。
由于对教材把握不太透彻,这节课有地方讲的不够透彻。在作业反馈中,我发现学生计算错误较多。 主要表现在以下几个方面:
一、不能顺利的移动小数点。
通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样或许效果会好许多。
教学完小数除法后,我发现学生原有的书写习惯不太好,影响了计算的竖式,学生在移动小数点时,原来的小数点的位置和新的小数点的位置不确定,所以上商的时候不知道小数点该打在哪里。当除数和被除数同时扩大时,有时候被除数就变了一个整数,就应该当作整数除法来算,当整数部分除完还有余数时,应该先在商中间打上小数点,再添0计算。我改学生的作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的'性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。
通过本节课的教学,让我认识到了自身教学存在的一些问题,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓进取,为培养合格的社会主义建设者和接班人尽自己的绵薄之力,做出更大的贡献。
一个数除以小数教学反思【第二篇】
教后反思:在教学过程中发现,学生都能够想到用转化的方法把除数变成整数再进行计算。学生出现了两种方法:一种是根据商不变的性质把转化为76585来计算,这正是我们要引导的方法;还有一种是利用商的变化性质只把除数化为整数85,即计算,这样除得的商就会缩小1/100,再扩大100倍就会得到正确的商。这种方法说明了学生知识迁移能力比较好,但不是我们提倡的。所以我没再做过多引导。现在反思当时应当学生对这两种方法进行比较,使学生明白哪种做法更简便,更易理解。学生算理得较好,但在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我虽然也进行了考虑,但在实际教学时忽视了书写格式的强调。结果反馈练习时出现了很多同学书写格式不正确,有以下几种情况:小数点不划去;除数和被除数只划一个;只划小数点,但前面的0不划等等。实际上除数是小数的除法是难点,难就难在不但要理解算理,更难在竖式的书写上,既要先把除数的。小数点画去,又要同时移动被除数的小数点,还要把原来的小数点打上小叉,向右移动后再点上。这是我考虑不周全的地方,只注重了算理,而忽视了格式。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。
通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、个别学生对于商中间有0的除法掌握还不够熟练。
除到哪位商那位,不够时忘记在商的位置上写0,再落下一个数。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似简单的问题却出现了错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样效果会更好。
一个数除以小数教学反思【第三篇】
一个数除以小数是在学生学习过除数是整数的除法后进行的。除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。重点是要让学生掌握:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。 在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我也进行了考虑。让学生明白,小数除以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的变成整数,为使学生看得更清楚,我要求学生把除数和被除数的小数点位置移在竖式上,移动的位数取决于除数的小数位数,除数有几位小数,被除数的小数点就向右移动几位。然后在旁边重新列一个竖式,然后按照整数除法的`方法进行计算。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、对算理的理解不够,应该多让学生来交流竖式中每一步所表示的含义。我改学生的作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。
二、学生整数除法的基础打得不牢,特别是商中间有0这种类型,它既是除法的重点,也是难点,可能是前面的教学有疏忽的地方。除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
三、部分学生的学习习惯较差,做题老是丢三落四的,不是忘了打小数点,就是忘了商0,或者是忘了被除数和除数同时扩大相同的倍数。有部分学生认为学习小数除法是比较复杂的,懒与计算,动手太少。
四、商的小数点与被除数原来的小数点对齐。在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
以后教学中需要改进的地方:
一、强化了对算理的理解,每次做完题都让学生来说说每一步计算的理由,表示的是几个几除以几,或是几个十分之几除以几;
二、总结列竖式的过程进行细化:
1、移动除数的小数点,移动几次变成整数。
2、被除数也移动同样的位数。
3、在商的位置上标上小数点,与被除数对齐。
4、用整数的除法法则进行计算。突出除到哪位商那位,不够时先在商的位置上写0,再落下一个数继续除。
一个数除以小数教学反思【第四篇】
在小组教研活动中,与苗老师和王老师同课异构,听评课中大家重点讨论了三个问题:
一、学生学习本节课的基础是什么?
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
二、怎样处理学生自主探究出的正确方法与错误方法?
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的'原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)
常老师提出来,在教学中怎样处理千差万别的错误与唯一正确的计算方法之间的关系呢?当时我想,是让正确的先入为主,还是先把错误的拿出来剖析?是怕错误的先入为主,还是根本没有辨析错误的意识?
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
三、特例与一般例子哪个先出示比较好?
一个数除以小数教材上的第一个例子是“7。65÷”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“÷”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“÷”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
上一篇:记承天寺夜游课文教学反思精编3篇
下一篇:《我爱洗澡》教学反思(3篇)