圆的面积教学反思【优质4篇】
【前言导读】此篇优秀教学范文“圆的面积教学反思【优质4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
圆的面积教学反思【第一篇】
《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。
学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。
本节课,我认为我主要有以下几个亮点:
一、重视自主探究,发挥学生主体性。
在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。
二、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。
三、练习坡度适当,由浅入深地掌握知识。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
课后设想:
圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。
圆的面积教学反思优点和不足【第二篇】
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
圆的面积教学反思【第三篇】
圆的面积是学生在学习了圆的基本特征以及圆的周长的基础上进行探讨、学习的,因为学生在学习圆的周长的时候已经了解了化曲为直的数学思想,所以,在学习圆的认识的时候继续渗透这种思想,以及再引申到数学的极限思想。这有利于学生知识的迁移,也是学生在学习上的又一次突破。因此,在教学中我注重以下几个环节的教学:
一、回顾五年级多边形面积的计算公式推导方法,引导学生求圆的面积也可以把圆转化成学过的图形,从圆的周长到圆的面积体验其中不同本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、让学生猜测,激发探究,在了解圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来。
三、演示操作,加深理解,当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个之前准备好的圆,小组拼一拼,说一说能拼成什么图形?并思考它与圆有怎样的关系。这样,通过学生操作,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。
四、引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,我作为引导者只是给学生指明了探究的方向,而把探究的。过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。
五、存在和改进的地方有:
1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=厘米,求圆的面积,有部分学生会把的平方算成是,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
圆的面积教学反思【第四篇】
在课堂教学中培养学生的创新技能必须依靠微妙的熏陶方法,让学生在不断学习的过程中感受到创新思维的技能。以下是我对本课教学的思考:
i、以旧促新
知道圆的面积后,自然会想到如何计算圆的面积?公式是什么?如何求和推导圆的面积公式?这些都是摆在学生面前的一系列实际问题。在这个时候,学生们可能会不知所措或做出惊人的发现。在任何情况下,鼓励学生大胆猜测、想象并说出他们预设的计划?如何计算圆的面积?在课堂上,根据学生反应的随机处理,估计大多数学生不会得到分数。即使他们理解,他们也可以让每个人体验发现公式的方法。此时,由于学生年龄较小,无法与以前的平面图形建立联系,需要老师的指导。他们以前学过什么平面图形?让学生快速回忆,调动原有的知识储备,为新知识的“再创造”做好准备。
II、根据发现更改图形
,将圆分成几个相等的部分,分组合作,用手放好,并将圆转换为学习的平面图形。为了研究学生的实际情况,计算机首先演示了2个、4个和8个相等的圆,这些圆分别组装成一个近似的平行四边形,以便学生观察它越来越像什么形状?你为什么说“喜欢”平行四边形?让学生表达自己的观点,充分肯定自己的观察结果。如果8个相等的部分有点像,那么16个相等的部分呢?计算机继续演示一个圆的16个相等部分,并将它们进行比较。哪个更像平行四边形?学生们会发现16个相等的部分比8个相等的部分更相似!因为它的底波波动相对较小且接近直线,所以引导学生闭上眼睛。如果它被分成32个相等的部分,会发生什么?64等分&Hellip&Hellip让学生展开想象的翅膀,使等分越多,就越像和接近平行四边形,最后它会变成一个长方形。完成另一个重要数学思想的渗透极限思想。
III、公式推导
学生可以计算矩形的面积:S=AB引导学生观察矩形和圆的长度和宽度之间的关系:找到长度=&PIR,宽度=R,矩形的面积=圆的面积,从而推导出s=AB=&pir2
IV、注重合作
注重小组学习,促进合作交流。实践证明,小组讨论有利于调动全体学生的积极性,有利于师生之间和学生之间的信息交流,有利于不同思维的碰撞。循环推导过程的创新更适合采用合作探究的学习方法。在本课程的教学中,教师从学生手中的材料入手,让学生摇摆,结合自己的创新说点什么,通过小组合作开展探究活动,不仅鼓励学生自主尝试,同时也重视学生之间的合作与互助,为学生提供多方位交流的机会,提高学生的合作学习意识。学生在学习中相互交流,提高了观察、分析和解决问题的能力。
v、培养创新
将传统的知识转移过程转变为“问题解决”序列的探究过程。在教学过程中,创设一些学生需要开辟新途径解决的问题情境,有利于提高学生的创新能力。
VI、 演练设计
对于巩固演练,遵循由浅到深、由易到难、循序渐进的原则。使学生在理解概念的基础上正确掌握公式,并能运用所学知识解决实际问题。
VII、存在的问题
在教学过程中,由于教学量的增加,学生也应该花更多的时间思考和推导圆的面积公式。详细设计应仔细安排。这是教学需要改进的地方,也是今后努力的方向。
上一篇:《确定位置》教学反思精编4篇
下一篇:《田忌赛马》教学反思精彩5篇