初二数学一次函数教案4篇

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“初二数学一次函数教案4篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

一次函数【第一篇】

一次函数

§  正比例函数

教学目标

1.认识正比例函数的意义。

2.掌握正比例函数解析式特点。

3.理解正比例函数图象性质及特点。

4.能利用所学知识解决相关实际问题。

教学重点

1.理解正比例函数意义及解析式特点。

2.掌握正比例函数图象的性质特点。

3.能根据要求完成转化,解决问题。

教学难点

正比例函数图象性质特点的掌握。

教学过程

ⅰ.提出问题,创设情境

一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。4个月零1周后人们在万千米外的澳大利亚发现了它。

1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

3.这只燕鸥飞行1个半月的行程大约是多少千米?

我们来共同分析:

一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

25600÷(30×4+7)≈200(km)

若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。函数解析式为:

y=200x(0≤x≤127)

这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。即

y=200×45=9000(km)

以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

类似于y=200x这种形式的函数在现实世界中还有很多。它们都具备什么样的特征呢?我们这节课就来学习。

ⅱ.导入新课

首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

1.圆的周长l随半径r的大小变化而变化。

2.铁的密度为/cm3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。

3.每个练习本的厚度为一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。

答应:1.根据圆的周长公式可得:l=2 r.

2.依据密度公式p= 可得:m=

3.据题意可知: h=

4.据题意可知:t=-2t.

我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样。

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数。

我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

[活动一]

画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律。

=2x   =-2x

结论:

1.函数y=2x中自变量x可以是任意实数。列表表示几组对应值:

x -3 -2 -1 0 1 2 3

y -6 -4 -2 0 2 4 6

画出图象如图(1).

=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:

x -3 -2 -1 0 1 2 3

y 6 4 2 0 -2 -4 -6

画出图象如图(2).

3.两个图象的共同点:都是经过原点的直线。

不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限。函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限。

尝试练习:

在同一坐标系中,画出下列函数的图象,并对它们进行比较。

= x  =- x

x -6 -4 -2 0 2 4 6

y= x

-3 -2 -1 0 1 2 3

y=- x

3 2 1 0 -1 -2 -3

比较两个函数图象可以看出:两个图象都是经过原点的直线。函数y= x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=- x的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线。当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小。

正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

[活动二]

经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理。

结论:

经过原点与点(1,k)的直线是函数y=kx的图象。

画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线。

ⅲ.随堂练习

用你认为最简单的方法画出下列函数图象:

= x    =-3x

ⅳ.课时小结

本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础。

ⅴ.课后作业

1、 习题─1、2、6题。

2、 《课堂感悟与探究》

ⅵ.活动与探究

某函数具有下面的性质:

1.它的图象是经过原点的一条直线。

随x增大反而减小。

请你举出一个满足上述条件的函数,写出解析式,画出图象。

解:函数解析式:y=-

x 0 2

y 0 -1

板书设计

§  正比例函数

一、正比例函数定义

二、正比例函数图象特征

三、正比例函数图象特征与解析式的关系规律

四、随堂练习

备课资料

汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间。如图所示

1.汽车用几小时可到达北京?速度是多少?

2.汽车行驶1小时,离开天津有多远?

3.当汽车距北京20千米时,汽车出发了多长时间?

解法一:用图象解答:

从图上可以看出4个小时可到达。

速度= =30(千米/时).

行驶1小时离开天津约为30千米。

当汽车距北京20千米时汽车出发了约个小时。

解法二:用解析式来解答:

由图象可知:s与t是正比例关系,设s=kt,当t=4时s=120

即120=k×4  k=30

∴s=30t.

当t=1时  s=30×1=30(千米).

当s=100时  100=30t  t= (小时).

以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点。

一次函数【第二篇】

〖教学目标〗◆1、知识与技能目标:通过本节课学习,使学生进一步巩固一次函数的知识;掌握待定系数法的一般步骤,求一次函数的解析式;会用一次函数的知识来描述实际问题。 ◆2、过程与方法目标:为分散例3的教学难点,用引例作铺垫;另一方面,在解决实际问题中,选择用一次函数的知识来解决,突出建模思想。 ◆3、情感与态度目标:从沙漠蔓延是严重的自然灾害之一这个实际问题的提出,有利于激发学生的学习兴趣,养成植树造林、保护环境的好习惯。〖教学重点与难点〗◆教学重点:用待定系数法,求一次函数的解析式。◆教学难点:例3问题用待定系数法的过程比较复杂。 〖关键〗 讲解例3时通过合作学习,找出几个不变量: ①.沙漠面积每年以相同的速度增长。 ②.1995年底的沙漠面积。但它们是多少不知道。〖教学过程〗 (一)复习回顾,引入新知。我们在上一节课已学习了有关函数的概念,大家必定知道一次函数的解析式:生:函数y=kx+b  (k≠0,k、b为常数)。我们称y是x的一次函数。那么要求出函数y=kx+b的解析式,必须要求出k、b这两个常数。这节课我们根据题 意,确定系数k、b,提出课题。(二)利用引例,探求新知。引例 已知y是x的一次函数,且当x=0时,y=2;当x=1时,y=-1。求y关于x的函数解析式。分析:① 由y是x的一次函数,它的解析式是什么?答:y=kx+b (k≠0,k、b为常数)。② 要求出函数y=kx+b的解析式,应求出k、b。③ 根据题意、得到关于k、b的方程组解:∵ y是x的一次函数,∴ y=kx+b  (k≠0,k、b为常数),当x=0时,y=2;∴ 2=0+b当x=1时,y=-1∴ -1=k+b∴ k= - 3,  b=2∴ y关于x的函数解析式是:y= -3 x+2。课内练习:p 163 做一做 1、2。通过引例和练习,我们可发现,对于已知函数的种类时,我们可以设这个函数的解析式,利用已知条件,通过列方程组的方法,来求k、b的值。这种方法称为待定系数法,下面简单小结它的解题步骤:⑴ 由y是x的一次函数,可以设所求函数的解析式为:y=kx+b  (k≠0,k、b为常数),⑵ 把两对已知的变量的对应值分别代入y=kx+b ,得到关于k、b的二元一次方程组。⑶ 解这个关于k、b的二元一次方程组,求出k、b的值。⑷ 把求得k、b的值代入y=kx+b,得到所求函数的解析式。注:若题目中没有指明是哪一类函数,就要通过分析题设中所给的数量关系来判断。(三)合作学习、应用新知。例3 某地区从1995年底开始,沙漠面积几乎每年以相同的速度增长。据有关报道,到XX年底,该地区的沙漠面积已从1998年底的万公顷扩大到万公顷。(1)       可选用什么数学方法来描述该地区的沙漠面积的变化?(2)       如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到多少万公顷?(插入情感教育:①图片、②文字、时间不超过节分钟)

人类要生存,要推动社会向前发展,就必须同各种各样的困难作斗争,包括同自然灾害的斗争。沙漠蔓延是严重的自然灾害之一,因为它无情地吞噬土地,给人类带来极大的危害。据统计,全世界有63个国家受沙漠之害,总面积已达万平方公里,相当于两个中国,而且还在以每年5800平方公里的速度蔓延、扩大。通过学习,我们要植树造林、保护环境。(下面问题,先由学生独立思考,然后合作学习。对学生中出现的共性问题,教师分析,即以学生为主体)① 我们已经学习了那些描述量的变化的方法?答:正比例函数,一次函数。② 所给问题中有哪些量?哪些是常量?哪些是变量?答:常量: 沙漠面积几乎每年以相同的速度增长。1995年底的沙漠面积。变量: 沙漠面积随着时间的变化而不断扩大。③ 如果沙漠面积的增长速度为k万公顷/年,那么经x年增加了多少万公顷?答:kx.如果1995年底该地区的沙漠面积为b万公顷,经x年该地区的沙漠面积增加到y万公顷。y与x之间是哪一类函数关系式?答:∵ y=kx+b ∴ 是一次函数关系式。④ 求y关于x的函数解析式,只要求出哪两个常数的值。答:k、b。⑤ 根据题设条件,能否建立关于k、b的二元一次方程组?怎样建立?答:当x=3时,y= ;    当x=6时,y= 。∴解: 设从1995年底该地区的沙漠面积为b万公顷,经过x年沙漠面积增加到y万公顷。由题意,得y=kx+b,且当x=3时,y= ;    当x=6时,y= 。把这两对自变量和函数的对应值分别代入y=kx+b,得解这个方程组,得这样该地区沙漠面积的变化就由一次函数y=+100来进行描述。(3)       把x=25代入y=+100,得 y=╳25+100=105(万公顷)。可见,如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到105万公顷。(四)课内练习    p 164  1、2。(五)归纳小结,梳理知识。请学生谈谈自己学习本节课的收获:1、  掌握待定系数法的解题步骤。2、  如果y是x的一次函数,那么可设y=kx+b,再用待定系数法。3、  对于没有指明是哪一类函数,应首先明确,这是何种函数。分层作业:  必做题  p 164  1、2、3、4。选做题  p 165  5、6.

一次函数【第三篇】

九江市永修县城丰中学  杨经文教学目标 1、经历一般规律的探索过程,发展学生的抽象思维能力。 2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。教学重点 1、  一次函数、正比例函数的概念及两者之间的关系。 2、  会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、  简单复习函数的概念(设在某一变化过程中有两个变量x和y,如果             ,那么我们称y是x的函数,其中x是自变量,y是因变量) 2、  演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、  汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习 1、  做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、  一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+、y=100-在形式上有什么相同之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量x与因变量y的次数都是1;③从形式上看,形式都为y=kx+b,k,b为常数。问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。 3、  例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

一次函数的图象教案【第四篇】

一、学生起点分析

八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析

《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:

1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:

初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:

理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计

本节课设计了七个教学环节:

第一环节:创设情境引入课题;

第二环节:画一次函数的图象;

第三环节:动手操作,深化探索;

第四环节:巩固练习,深化理解;

第五环节:课时小结;

第六环节:拓展探究;

第七环节:作业布置。

第一环节:创设情境引入课题

内容:

一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望。

效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望。

第二环节:画正比例函数的图象

内容:首先我们来学习什么是函数的图象?

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

例1请作出正比例函数y=2x的图象。

第三环节:动手操作,深化探索

内容:做一做

(1)作出正比例函数y= 3x的图象。

(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

请同学们以小组为单位,讨论下面的问题,把得出的结论写出来。

(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

(3)正比例函数y=kx的图象有什么特点?

明晰

由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的`,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式。正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

议一议

既然我们得出正比例函数y=kx的图象是一条直线。那么在画正比例函数图象时有没有什么简单的方法呢?

因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了。因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线。

一次函数的图象:同步测试

14若直线经过第一。二。四象限,则的取值范围是( ).

>0,b>0 >0,b<0

<0,b>0 D. k<0,b<0

2.已知一次函数y=3-2x

(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

(3)x取何值时,y>0?

3.已知一次函数y=-2x+4

(1)画出函数的图象。

(2)求图象与x轴、y轴的交点A、B的坐标。

(3)求A、B两点间的距离。

(4)求△AOB的面积。

(5)利用图象求当x为何值时,y≥0.

《函数的图象》课后练习

1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

=(x+12)(0≤x≤10)

= +12(0≤x≤10)

=+10(x≥0)

=(x-12)(0≤x≤10)

17 44453
");