2.4 有理数的加法(精编5篇)

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“2.4 有理数的加法(精编5篇)”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

《有理数的加法》教案1

教学目的:

经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

教学重点:

有理数的加法法则

教学难点:

异号两数相加的法则

教学教程:

一、复习提问:

1、如果向东走5米记作+5米,那么向

西走3米记作__。

2、已知a=-5,b=+3,

︱a︳+︱b︱=_

已知a=-5,b=+3,

︱a︱-︱b︱=__

-1012345678

二、授新课

小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

提问:这题有几种情况?

小结:有以下四种情况

(1)两次都向东走,

(2)两次都向西走

(3)先向东走,再向西走

(4)先向西走,再向东走

根据小结,我们再分析每一种情况:

(1)向东走5米,再向东走3米,一共向东走了多少米?

+5+3(+5)+(+3)=+8

(2)向西走-5米,再向西走-3米,一共向东走了多少米?

-5-3(-3)+(-5)=-8

(3)先向东走5米,再向西走3米,两次一共向东走了多少米?

+3+5(+5)+(-3)=2

(4)先向西走5米,再向东走3米,两次一共向东走了多少米?

-5+3(-5)+(+3)=-2

下面再看两种特殊情况:

(5)向东走5米,再向西走5米,两次一共向东走了多少米

-5+5(+5)+(-5)=0

(6)向西走5米,再向东走0米,两次一共向东走了多少米?

-5(-5)+0=-5

小结:总结前的六种情况:

同号两数相加:(+5)+(+3)=+8

(-5)+(-3)=-8

异号两数相加:(+5)+(-3)=2

(-5)+(+3)=-2

(+5)+(-5)=0

一数与零相加:(-5)+0=-5

得出结论:有理数加法法则

1、同号两数相加,取相同的符号,并把绝对值相加

2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

3、一个数与零相加,仍得这个数

例如:

(-4)+(-5)(同号两数相加)

解:=-()(取相同的符号)

=-9(并把绝对值相加)

(-2)+(+6)(绝对值不等的异号两数相加)

解:=+()(取绝对值较大的符号)

=+4(用较大的绝对值减去较小的绝对值)

练习:

口答:

1、(-15)+(-32)=

2、(+10)+(-4)=

3、7+(-4)=

4、4+(-4)=

5、9+(-2)=

6、(-0.5)+4.4=

7、(-9)+0=

8、0+(-3)=

计算:

(1)(-3)+(-9)(2)(-1/2)+(+1/3)

解略

练习:

(1)15+(-22)=

(2)(-13)+(-8)=

(3)(-0·9)+1·5=

(4)2·7+(-3·5)=

(5)1/2+(-2/3)=

(6)(-1/4)+(-1/3)=

练习三:

1、填空:

(1)+11=27(2)7+=4

(3)(-9)+=9(4)12+=0

(5)(-8)+=-15(6)+(-13)=-6

2、用“<”或“>”号填空:

(1)如果a>0,b>0,那么a+b0;

(2)如果a<0,b<0,那么a+b0;

(3)如果a>0,b<0,|a|>|b|,那么a+b0;

(4)如果a<0,b>0,|a|>|b|,那么a+b0

小结:

1、掌握有理数的加法法则,正确地进

行加法运算。

2、两个有理数相加,首先判断加法类

型,再确定和的符号,最后确定和的绝对值。

作业:课本第38页2、3

第40页1、2

它山之石可以攻玉,以上就是一米范文范文为大家整理的5篇《 有理数的加法》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

《有理数的加法》教案2

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

四、学情分析

1、学生非常熟悉正数加正数,正数加零的情况。

2、有理数的分类、数轴、绝对值的相关知识已经掌握。

3、学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1、将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2、由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

3、在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1.回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4; -7和4; 7和-4; -7和-4

设计意图回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0.

设计意图强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

(出示课题)

设计意图体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、 同号两数相加,取相同的符号,并把绝对值相加。

2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、 一个数同0相加,仍得这个数

老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

设计意图感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值.

课堂练习:

1、计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2、计算

(1)5+(-22); (2)(-)+(-8)

(3)(-)+; (4)+(-)

3、用“>”或“<”填空:

(1)如果a>0,b>0,那么a+b____0;

(2) 如果a<0,b<0,那么a+b____0;

(3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

(4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

设计意图帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)

(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

(3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

(4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

(5)a+0=a.

设计意图有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

设计意图由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

设计意图由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

(六)布置作业

(1)P56 习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

设计意图充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1、通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

2、通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

3、通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

4、在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

.3有理数的加法3

非常高兴,能有机会和同学们共同学习

昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作—1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的——(板书课题)。

刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业 本,优胜组共6人,老师将送出的作业 本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业 本,占总数的几分之几?(十二分之七)如果,老师得到的作业 本记为正数,送出的作业 本记为负数,则老师手里的作业 本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

对于,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

(1)    同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

(2)    异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

(3)    一个数同0相加,其和有什么规律呢?(易得出结论)

同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为法则。

同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

(活动过程 1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程 2后:让每组第三排同学评价加分)

同学们已经基本掌握了法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业 中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样“药”到“病” 除!(师生共同治“病”)

看来同学们对已经掌握得很好了,大家还记得前面那个难倒我们的题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

.3有理数的加法4

一。教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

2.数学思考

通过观察,比较,归纳等得出有理数加法法则。

3.解决问题

能运用有理数加法法则解决实际问题。

4.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点

会用有理数加法法则进行运算。

6.难点

异号两数相加的法则。

二。教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三。学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四。教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

4+(-2),

黄队的净胜球为

1+(-1)。

这里用到正数与负数的加法。

(二)、师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。这节课我们来研究两个有理数的加法。

两个有理数相加,有多少种不同的情形?

为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量。若我们规定赢球为“正”,输球为“负”,打平为“0”。比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球。也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形。

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

(三)、应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3);   (2)(-4)+(-3);     (3)(+4)+(-3);    (4)(+3)+(-4);

(5)(+4)+(-4);   (6)(-3)+0;        (7)0+(+2);       (8)0+0.

学生逐题口答后,师生共同得出

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则。进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值。

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-)+ (两个加数异号,用加法法则的第2条计算)

=-() (和取负号,把大的绝对值减去小的绝对值)

=-

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-)+(+); (2)(+)+(-3); (3)(-)+(-);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)、小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1.计算:

(1)(-10)+(+6);    (2)(+12)+(-4);     (3)(-5)+(-7);     (4)(+6)+(+9);

(5)67+(-73);      (6)(-84)+(-59);    (7)33+48;         (8)(-56)+37.

2.计算:

(1)(-)+(-);        (2)+(-);         (3)(-)+3;

(4)+;            (5)7+(-);          (6)(-)+(-);

(7)(-)+;         (8)+(-);       (9)(-)+0.

4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

五。教学反思

“有理数的加法”的教学,可以有多种不同的设计方案。大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。

现在,试比较这两类教学设计的得失利弊。

第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好。

第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。

这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的。第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。权衡利弊,我们主张采用第二种教学方法。

六。点评

潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

.3有理数的加法5

教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标 1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程 1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、  示例3、学生板演,强调使用交换律、结合律4、  课堂练习: ①(-25)+(-7)+25             ②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、  课堂小结①这节课你学会了一种什么运算?②你有何体会?6、  作业 :五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。

221381