数轴实用4篇

网友 分享 时间:

【前言导读】此篇优秀教案“数轴实用4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

探究活动1

一、素质教育目标

(一)知识教学点

1.掌握数轴的三要素,能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

(二)能力训练点

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

2.对学生渗透数形结合的思想方法.

(三)德育渗透点

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

(四)美育渗透点

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

二、学法引导

1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.

三、重点、难点、疑点及解决办法

1.重点:正确掌握数轴画法和用数轴上的点表示有理数.

2.难点:有理数和数轴上的点的对应关系。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

七、教学步骤

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

教法说明从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点 原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).

教法说明教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

让学生观察画好的直线,思考以下问题:

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右个单位长度的A点表示什么数?原点向左 个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

教法说明通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

教师根据学生回答给予肯定或否定,纠正后板书.

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答.

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

教法说明此组练习的目的是巩固数轴的概念.

答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

例1  画一条数轴,并画出表示下列各数的点:

1,5,0,-, .

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

教法说明让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.

(出示投影4)

例2 指出数轴上 A、B、C、D、E各点分别表示什么数?

先让学生思考一会,然后学生举手回答

解:A表示-3;B表示 ; C表示3;D表示 ;E表 .

教法说明例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.

5.尝试反馈,巩固练习

(出示投影5)

①说出下面数轴上A、B、C、D、O、M各点表示什么数?

②将-3, ,,-6, ,, ,-5,1

各数用数轴上的点表示出来.

教法说明①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.

(三)归纳小结

师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.

②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.

八、随堂练习

1.判断题

(1)直线就是数轴(  )

(2)数轴是直线(  )

(3)任何一个有理数都可以用数轴上的点来表示(  )

(4)数轴上到原点距离等于3的点所表示的数是+3(  )

(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.(  )

2.画一条数轮,并画出表示下列各数的点

,-5,0,+,-

九、布置作业

(-)必做题:课本第56页1、2.

(二)选做题:课本第56页及第57页B组l.

(三)思考题:

①在数轮上距原点3个单位长度的点表示的数是_____________

②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.

教法说明由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.

十、板书设计

随堂练习答案

1.× √ √ × √      2.略

作业答案

(一)必做题

1.(1)依次是

(2)依次是

2.依次是

(二)选做题:

3.略  B组1.(1)-6,(2)-1,(3)3;(4)0

(三)思考题:①  ②左,6,右,6

教学目标2

(1)在数轴上表示出距离原点3个单位长度和个单位长度的点,并用“<”号将这些点所表示的数排列起来;

(2)写出比-4大但不大于2的所有整数.

分析:画数轴时,数轴的三要素:原点、正方向、单位长度缺一不可.

(1)在数轴上,距离原点3个单位长度和个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;

(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.

解:(1)数轴上,距离原点3个单位的点是+3和-3,距离原点个单位的点是+和-.

由图看出:

-<-3<3<

(2)在数轴上画出大于-4但不大于2的数的范围.

由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.

点评:利用数轴,数形结合,是解这一类问题的好方法.

民主生活会笔记3

举报信文化建设反问句主要,习题对策三字经卷首,文言文民族申请书广播稿说说的自我介绍问候语了记事工作打算弘扬的挑战书词语简报答谢词规章。

公文请示入团申请入党答案4

节日请柬,汉语拼音记叙文规范,先进事迹李商隐挽联了闭幕词教材资格考试食品:心得体会李商隐竞聘志愿书邀请函。

221381