初中数学知识点总结图 初中数学知识点总结口诀初中数学知识点精编16篇
初中数学知识点涵盖数与代数、图形与几何、统计与概率等,强调基础运算、方程解法、几何性质、数据分析等核心内容。下面是可爱的小编为大家收集整理的初中数学知识点总结图 初中数学知识点总结口诀初中数学知识点优秀范文,欢迎阅读参考,希望对您有所帮助。
初中数学知识点总结图 篇1
一次函数的图象可以由k、b的正负来决定:
k大于零是一撇(由左下至右上,增函数)。
k小于零是一捺(由右上至左下,减函数)。
b等于零必过原点;。
b大于零交点(指图象与y轴的交点)在上方(指x轴上方)。
b小于零交点(指图象与y轴的交点)在下方(指x轴下方)。
其图象经过(0,b)和(-b/k,0)这两点(两点就可以决定一条直线),且(0,b)在y轴上,(-b/k,0)在x轴上。
b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。
1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。
a的解集是解集小小的取小。
b的解集是解集大大的取大。
c的解集是解集大小的小大的取中间。
d的解集是空集解集大大的小小的无解。
另需注意等于的问题。
初中数学知识点总结图 篇2
一、清楚做题的目的。数学包罗万象,数学练习题更是数不胜数,我们不可能把所有的习题一网打尽,所以做题前同学们一定要清楚做题的目的。大同初中全科培训辅导班的老师讲到,我们做题不是为了学会这一道题,而是通过习题练习总结出解题的思路,归纳出解题规律和方法,提升自己的解题能力。
二、做题时要先做真题。大同初中全科培训辅导班老师讲到,真题就是历年来各个地区的考试题,也是我们要重点练习的题目。万变不离其宗,虽然每年的考试题千变万化,但是考察的知识点却永远是围绕教学大纲的,一些重要的知识点每年都会重复考察。历年的真题是非常有参考价值和知识指向的,可以帮助我们明确复习的方向。
三、做题时还要多做经典题型。大同初中全科培训辅导班老师解释说,围绕数学课本上的重点出的题型,就是经典题,经典题在考试中出现的机率非常高,也是老师们平时经常着重要求我们练习的题目。对于老师交待和提到的经典题型,同学们一定要给予十二分的重视,不仅要认真练习,保证自己完全掌握这些知识点,还要定期进行复习。
四、做错过的题目要重视。大同初中全科培训辅导班老师讲到,对于自己做过的错题,同学们一定要慎重对待,除了要分析错误原因,纠正错误的地方外,记录到自己的笔记本上定期复习外,还要再多做些同类型的题目,加深自己的印象,保证自己已经掌握了这方面的知识,不会再犯同样的错误。
初中数学知识点总结图 篇3
1、单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
2、单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
2平方差公式。
两数和与这两数差的积,等于它们的平方差。
3完全平方公式。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
4二元一次方程组。
1、方程中含有未知数,并且未知数的指数(或未知项的次数)都是1,像这样的方程叫做二元一次方程。
2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。
3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解(二元一次方程组的解可能会出现在选择题中验根问题)。
5、消元:将未知数的个数由多化一,最终解一元一次方程然后反代解决二元三元、逐一解决的想法,叫做消元思想。
初中数学知识点总结图 篇4
同位角知识:两条直线a,b被第三条直线c所截会出现“三线八角”。
1.在截线的同旁;。
2.在被截两直线的同方向;。
3.同位角截取图呈“f”型。
平行线的性质:两直线平行,同位角相等。
知识归纳:平行线的判定:同位角相等,两直线平行。
初中数学知识点总结图 篇5
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形直线、射线、线段和角。
一、目标与要求。
1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
三、难点。
立体图形与平面图形之间的转化是难点;。
探索点、线、面、体运动变化后形成的图形是难点;。
画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0,小于90的角叫做锐角。
直角:等于90的角叫做直角。
钝角:大于90而小于180的角叫做钝角。
平角:等于180的角叫做平角。
优角:大于180小于360叫优角。
劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
14.几何图形分类。
(1)立体几何图形可以分为以下几类:
第一类:柱体;。
棱柱体积统一等于底面面积乘以高,即v=sh,
第二类:锥体;。
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及n棱锥;。
棱锥体积统一为v=sh/3,
第三类:球体;。
此分类只包含球一种几何体,
体积公式v=4r3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类。
a.圆形。
注:正方形既是矩形也是菱形。
初中数学知识点总结图 篇6
1.充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。
2.知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。
3.让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。
4.注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。
知识要点:
整式的有关概念。
(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。
(2)多项式:几个单项式的和叫做多项式。
初中数学知识点总结图 篇7
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)。
2、
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)。
两个点关于y轴对称时,它们的坐标中,y相等,x的`符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)。
在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。
若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。
初中数学知识点总结图 篇8
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类。
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法。
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°。
推论1直角三角形的两个锐角互余;。
推论2三角形的一个外角等于和它不相邻的两个内角和;。
推论3三角形的一个外角大于任何一个和它不相邻的内角;。
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
初中数学知识点总结图 篇9
因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍微难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
初中数学知识点总结图 篇10
中考很重要,数学不简单。下面是中考数学知识点总结完整版,考前过一遍记忆更深刻!
知识点1:一元二次方程的基本概念。
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置。
1、直角坐标系中,点a(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点a(1,1)在第一象限。
4、直角坐标系中,点a(-2,3)在第四象限。
5、直角坐标系中,点a(-2,1)在第二象限。
知识点3:已知自变量的值求函数值。
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质。
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数。
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值。
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
知识点7:圆的基本性质。
1、半圆或直径所对的`圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系。
1、直线与圆有唯一公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3、弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、垂直于半径的直线是圆的切线。
8、圆的切线垂直于过切点的半径。
初中数学知识点总结图 篇11
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质。
(1)具有平行四边形的一切性质;。
(2)矩形的四个角都是直角;。
(3)矩形的对角线相等;。
(4)矩形是轴对称图形。
3、矩形的判定。
(1)有一个角是直角的平行四边形是矩形;。
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的.四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。
4、矩形的面积。
s=长×宽=ab。
5、矩形的周长。
c=2(长+宽)=2(a+b)。
初中数学知识点总结图 篇12
“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
如果一个角的两边成一条直线,那么这个角叫做平角;平角的'一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。
如果两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;
同角(或等角)的补角相等。
角的大小比较,有两种方法:
(1)度量法(利用量角器);
(2)叠合法(利用圆规和直尺)。
从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法。
(1)考查与时钟有关的问题;(2)角的计算与度量。
初中数学知识点总结图 篇13
2过一点有且只有一条直线和已知直线垂直。
3过两点有且只有一条直线。
4两点之间线段最短。
5同角或等角的补角相等。
6直线外一点与直线上各点连接的所有线段中,垂线段最短。
7平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8如果两条直线都和第三条直线平行,这两条直线也互相平行。
初中几何公式:角。
9同位角相等,两直线平行。
10内错角相等,两直线平行。
11同旁内角互补,两直线平行。
12两直线平行,同位角相等。
13两直线平行,内错角相等。
14两直线平行,同旁内角互补。
初中几何公式:三角形。
15定理三角形两边的和大于第三边。
16推论三角形两边的差小于第三边。
17三角形内角和定理三角形三个内角的和等于180°。
18推论1直角三角形的两个锐角互余。
19推论2三角形的一个外角等于和它不相邻的两个内角的和。
20推论3三角形的一个外角大于任何一个和它不相邻的内角。
21全等三角形的对应边、对应角相等。
22边角边公理有两边和它们的夹角对应相等的两个三角形全等。
23角边角公理有两角和它们的夹边对应相等的两个三角形全等。
24推论有两角和其中一角的对边对应相等的两个三角形全等。
25边边边公理有三边对应相等的两个三角形全等。
26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。
27定理1在角的平分线上的点到这个角的两边的距离相等。
28定理2到一个角的两边的距离相同的点,在这个角的平分线上。
29角的平分线是到角的两边距离相等的所有点的集合。
初中几何公式:等腰三角形。
30等腰三角形的性质定理等腰三角形的两个底角相等。
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边。
32等腰三角形的顶角平分线、底边上的中线和高互相重合。
33推论3等边三角形的各角都相等,并且每一个角都等于60°。
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
35推论1三个角都相等的三角形是等边三角形。
36推论2有一个角等于60°的等腰三角形是等边三角形。
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
38直角三角形斜边上的中线等于斜边上的一半。
39定理线段垂直平分线上的点和这条线段两个端点的距离相等。
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
42定理1关于某条直线对称的两个图形是全等形。
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。
初中数学知识点总结图 篇14
正棱锥是棱锥的一种,具备着所有棱锥的性质和定理。
如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
正棱锥的性质。
(3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;。
(4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是s=1/2ch‘。
特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。
初中数学知识点总结图 篇15
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
初中数学知识点总结图 篇16
1、对称性:
a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。
b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。
2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。
3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。
4、四大关系:点与圆的位置关系,直线与圆的`位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的判定和性质以及有关计算是重点。
5、有关计算问题:有关线段的计算,正多边形的计算,有关扇形及阴影面积的计算,以及圆柱、圆锥侧面展开图的计算。
6、圆中添辅助线一般方法:添与垂径定理相关的辅助线,添与切线有关的辅助线(创造直角的辅助线),添与圆内接四边形相关的辅助线;两圆相交时作公共弦,两圆相切时作分切线,总之添辅助线时,要构造和完善基本图形,切忌破坏图形的完整性。
下一篇:返回列表