生物科学论文汇聚 生物科学的论文【4篇】

网友 分享 时间:

【前言导读】这篇优秀范文“生物科学论文汇聚 生物科学的论文【4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

生物科技小论文【第一篇】

摘 要:生物科学是二十一世纪最有发展前景的学科之一,它作为自然科学领域的带头学科,将会有极大的发展空间;而且人类社会在新世纪面临的人口、粮食、资源、环境和健康问题将更加突出,而这些问题的解决,都将在很大程度上依赖于生物科学的进步。所以作为新世纪的高中学生,学好生物这门学科就显得非常重要。当前有关创新精神和实践能力的培养的问题引起了教育界和全社会的广泛关注,如何在生物教学中实施成为当前的要务,而研究性学习顺应了这一历史的客观要求。现存的生物学教学方式具有一定的局限性,以研究性学习的方式建立生物学知识框架具有独特的优势。积极创新情境,让学生体验科学探究过程,学习科学探究的方法,养成科学探究的能力,是生物教学的重要任务之一。因此本文就此问题结合自己九年的生物课堂教学实践谈几点看法。

关键词:研究性学习 生物教学 必要性 把握 注意事项

一、在高中生物教学中贯穿研究性学习的必要性

1、新一轮课程改革倡导学生开展自主学习、探究学习、合作学习,倡导建立积极的价值观,倡导“参与式”教学理念,在教学过程中渗透学生的创新精神和创造能力的培养,这些教育改革的新观念已引起了教育界和全社会的广泛关注,并成为当前基础教育改革的一个热点。研究性学习是由学生在一定的生活情境中发现问题,选取专题、设计研究方案,通过主动的探索和研究而求得问题的解决,从而了解和体验科学探索的过程,养成自主探究。

2、向高中学生传授科学研究的知识和方法,并在活动课程或课外活动中开展一些课题研究活动,是培养创新意识和实践能力的一个重要方面,因而研究性学习顺应了这一历史的客观要求。

二、生物教学中研究性学习的初步实践

1、贴近生活,引入课题,进行推测,提出假设

本教学设计从教师有目的的给出材料――日常生活中的淀粉消化的速度与生产过程中淀粉水解速度比较――直接切入课题,引起学生兴趣的同时,提出问题,引发学生思考――生物体内的催化剂――酶的特点。

材料:人每天都需要吃饭,人体消化的速度相当快。人体内每小时可以水解500吨淀粉,相同质量的淀粉,在有足够的酸作为催化剂的条件下,全部水解需要十几天。

这个事实说明了什么问题?

学生回答:酶的催化作用具有高效性。

教师引导:酶是生物催化剂,它和无机催化剂相比,可能具有高效性的特点。怎样才能知道酶具有高效性呢?

2、点拨启发,设计方案,实验探索

教师引导:我们在无机化学当中学过催化剂,怎样能确定哪种催化剂的效率更高呢?

学生讨论得出结论:比较相同化学反应在不同的催化剂的催化作用下,通过化学反应速度可以确定催化剂的催化效率――化学反应速度越快的,催化剂的效率越高;反之,催化效率越低。

教师引导:化学反应速度怎样才能确定呢?

学生思考回答:通过反应物的消耗速度或者产物的生成速度比较可以看出来。

材料:过氧化氢(H2O2)在 Fe3+的催化下,也可分解成H2O和O2,动物新鲜肝脏中含有的过氧化氢酶也能催化这个反应。据测算,每滴氯化铁中的Fe3+数,大约是肝脏研磨液中过氧化氢分子数的25万倍。从数目上看,一滴含有催化剂的容液中,Fe3+数远远大于过氧化氢酶的分子数。

如果现在我们想弄清楚Fe3+与过氧化氢酶,哪一种催化剂的催化效率高,那么,我们应该如何设计这个实验?

问题引发了学生的热烈讨论。面对学生的争论、教师不急于点评。先让学生相互点评,最后经教师分析比较,最终筛选出下列设计方案对猜想进行探究――分组实验。

实验设计引导:要比较Fe3+和过氧化氢酶的催化效率,设计实验中的其他条件应该相同,如两个试管中过氧化氢溶液的量应该相同,Fe3+和动物肝脏也应尽可能同时加入两个试管中。然后通过产物――O2的产生速度,即气泡的产生量、带火星的木条的复燃速度,或者试管温度的变化――最终确定酶与无机催化剂效率高低。

教师在引导过程中,要注重等量性原则,科学性原则,可操作性原则,单一变量原则等实验设计原则的渗透。

学生按实验设计步骤分组实验。并思考问题:1.你在实验过程中观察到哪些实验现象?2.通过这个实验你可以得出什么结论?

通过以上的引导,从提问、引导猜想,设计实验进行探究,环环相扣,有的放矢,学生的求知欲望冉冉升起,为下一步探索研究作了良好的铺垫。既能让学生进行自主学习,又在实验的设计过程中,培养学生的创新精神,提高学生的科学素养。

3、实践拓展,深化认识

通过实验探究得出结论,酶的一个特性――高效性。

给出生产实践资料,学生在分析中,深化学生认识,加强学生科学就在身边的探究思想。

资料:人们在生产实践中就是利用了酶的这个特性,比如说在污染物的处理上,废旧塑料的大批量降解利用的就是相关的酶,塑料自然降解需要上百年的时间,甚至需要更长时间,而利用专用酶处理相等量的塑料几天内就可以完成。

三、在实施过程中的注意事项

1、研究性学习应该面向全体学生。离开了全体学生这个层面,研究性学习就完全背离了它的初衷。所以,要让研究性学习避免“贵族化”,走向“平民化”,就得重研究过程,而淡化研究成果。如果成果不期而遇,自然是个惊喜,但不出成果,只要“学会了研究”,也是极大的收获。

四、研究性学习的意义

通过教学中的教学方式的转变,惊喜地发现,无论是对老师的教还是对学生的学,都有很大的促进作用。首先,研究性学习从根本上改变了过去那种传统的教学模式,变老师讲学生听为真正学生自己学、自己发现问题、自己想办法解决。充分激发了学生的热情,体现了学生的主体性、主动性,在一定程度上培养了学生掌握、运用、分析信息材料的能力,开拓了学生的眼界和思维 能力,学到了许多课本上没有学到的知识,大大丰富了学生的思维方法,形成了一系列良好的思维品质。第二,研究性学习给我们的教学方式及老师提出了更新的挑战。研究性学习让我们的学生大胆探索,充分发挥学生的主体性、主动性,学生人多,思维不受限制,老师的引导如何发挥作用,这就给我们老师的教学方式提出了新的要求,因此,随着涉及的面越来越广,这就要求教师必须加强学习,不断拓宽自己的知识面。

有动力就有进步,研究性学习对推动教学改革有着极大的促进作用,实质上,它将带来教法和学法一次新的革命。

总之,学好生物科学是相当重要的。倘若就我们的学习喻作航船,勤奋则是轮船的马达;正确的学习方法便是轮船的方向盘与航线,让我们驾上这艘希翼之船在知识的海洋中圆游,让船儿载着我们驶向美好吧!

有关生物科学论文汇总【第二篇】

实验内容 5做一个生态瓶

实验地点 实验室

实验目的 能设计一个生态瓶建造方案。

实验器材 大饮料瓶、泥土、水草、水生小动物

实验步骤

1、先在瓶底装入一层淘洗干净的沙(如要加几块小石子也就在这时候放)。

2、装入半瓶自然水域的水。

3、往瓶里种上自己准备的水草。

4、再放入小动物。

5、进行观察记录。

实验现象 生物和非生物是互相作用、互相依存的,形成了一个密不可分的整体

实验效果

实验人

实验时间

仪器管理员签字

生物科技小论文【第三篇】

摘要:生物技术在食品生产中的应用已有几个世纪,主要采用微生物发酵生产许多传统的食品,如面包、酸奶、奶酪及啤酒等,始终与人类生活息息相关。现代生物技术的飞速发展为解决人类的食品与营养、健康、安全等重大问题开辟了一条崭新途径。同时在食品安全方面可以为食品过敏原的治疗,益生菌作用的分子机理、病理—生物技术的运用和营养动力学提供支持和可能。

关键词:食品、生物技术、食品安全

近年来,随着许多新兴的生物技术应用于食品生产与开发,促进了食品工业的飞速发展。适应和满足消费者需求的安全、方便、特别是健康的食品正不断进入市场。为满足消费者的需求,维持或扩大市场份额,食品工业正致力于开发高附加值的新型或改良食品。同

时加强对生物技术创新策略的研究,将有利于食品功能性的开发。

一、食品与基因工程

随着现代生物技术的发展,人类获得优质食物和制造优质食物的方法越来越科学。动物、植物和微生物是食品工业的基本原料,原料品种的改良可为食品工业发展提供先决条件。利用基因工程技术定向改造生物种的成功,开辟了一条改造和创造新品种的有效途径。按食品原料种类不同转基因食品可包括三类:转基因微生物食品、转基因植物食品和转基因动物食品。

1、转基因微生物食品

转基因微生物食品可定义为转基因微生物产生的食物或利用转基因微生物为原(辅)料生产的食品或食品添加剂或以转基因微生物制造的农药、肥料、饲料在动、植物所产生的食品。转基因微生物用作食品加工的辅料成分,如酶制剂和食品添加剂;另外作为食品(食物)生产中的农药、肥料、饲料使用,均为间接产生的转基因食品。这一类转基因食品的应用日益广泛,而且此类食品的安全问题容易确认。它的作用在于:①应用于提高食品产品的品质,如酿酒酵母的应用。②应用于简化工艺,缩短生产周期。③应用于食品的抗菌和防腐保鲜。④应用于食品级酶制剂生产菌的改良,如凝乳酶的应用。⑤应用于生产保健食品的有效成分。⑥应用于食品微生物快速检测

2、转基因动物食品

转基因动物食品是指由转基因动物产生的食物或利用转基因动物为原料生产的食品或食品添加剂。例如,将牛的生长激素基因导入

宿主猪产生了生长速度和饲料转化率大幅度提高的转基因,以这种猪为原料生产的食品即为转基因动物食品。

3、转基因植物食品

转基因植物食品是指由转基因植物产生的食物或利用转基因植物为原料生产的食品或食品添加剂。在转基因植物食品中,植物淀粉的转基因产品是一大类。其中玉米淀粉在国际市场占80%以上,其余为小麦淀粉、木薯、马铃薯和大米淀粉等。

二、食品与蛋白质工程

蛋白质工程是指以蛋白质的结构及其功能关系为基础,通过基因修饰、蛋白质修饰等分子设计,对现存蛋白质加以改造,组建新型蛋白质的现代生物技术。

蛋白质工程在食品工业中应用主要集中在食品工业专用酶制剂的改造方面。通过酶结构或局部构象的调整和改造,可大大提高食品专用酶制剂的耐高温、抗氧化能力,增加酶的稳定性和适用PH范围,从而获得性质更稳定、作用效率更高的酶。

近来国际上又提出置白质全新设计的概念,其过程大致是:在确定设计目标后,先根据一定规则产生初始序列,经过结构预测和构建模型,对序列进行初步的修改,然后进行基因表达或多肽合成,再经结构检测,确定是否与原定目标相符,并根据检测结果.指导进一步设计。通常完成一个蛋白质的全新设计,要经过反复多次设计→基因表达或合成→检测→再设计的过程。目前该技术还处在探索阶段,但其应用前景非常诱人。

三、食品与酶工程

生物技术中对食品工业生产影响量大的还是酶工程和发酵工程,酶工程是指在一定的生物反映器内,利用酶的催化作用,将相应的原料转化成有用物质的技术,是将酶学理论与化工技术结台而形成的新技术,其应用领域已经遍及农业、食品、医药、环境保护、能源开发和生命科学理论研究等各个方面。与此同时,酶工程产业也在快速发展,1998年全世界工业酶制剂销售额高达16亿美元。预计到2008年,销售额将达到30亿美元。迄今为止,全世界已发现的酶有3000多种,而工业上生产的酶有60多种,真正达到工业规模的只有20多种。

酶在食品工业中的应用可以增加产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,甚至可以生产出用其它方法难以得到的产品,促进新产品、新技术、新工艺的兴起和发展。随着基因工程、细胞工程等高新技术应用于酶工程领域,不断研究开发出更多的新品种、新用途、高活力的酶类。同时酶的固定化技术,酶分子修饰技术及模拟酶技术也得到更快发展,使酶具有更高的催化效率和精巧的选择性,在食品工业也必将得到更加广泛的应用.生产出符合人们需求的新食品,促进食品工业的飞速发展。

四、食品与发酵工程

发酵工程又称为微生物工程,是指传统的发酵技术与DNA重组、细胞融合、分子修饰和改造等技术结台并发展起来的现代发酵技术。它是利用擞生物的特定性状,通过现代化工程技术生产有用物质或直

接应用于工业化生产。以把粮食、能源、化学制品、环境控制等全球性问题联系起来的一种技术体系。发酵工程是古老而又有潜力的工业技术。生物技术中的基因工程、酶工程、单克隆抗体,生物量的转化等研究成果为它注入新内窖,使它有了新的应用前景。

发酵工程在食品工业中的应用主要有:酒类发酵、氨基酸发酵、有机酸发酵、单细胞蛋白的发酵生产、食用菌的发酵生产、食品添加剂的发酵生产、生物活性物质的发酵生产和其他物质的发酵生产。

五、食品与细胞工程

细胞工程是生物技术的重要组成部分,它是以生物细胞或组织为研究对象,利用细胞生物学和分子生物学技术,应用工程学的步骤,按照预定目标和设计有计划地改变细胞的遗传物质并使之增殖,从而生产有用的细胞生物产品或获得新型生物品种的一门综合性科学技术。

植物细胞大规模培养的产物有种苗、细胞、初级代谢物、次级代谢物和生物大分子等。其中,许多产物已在医药、食品、化工、农业及林业中得到广泛的应用。动物细胞大规模培养是指在人工条件下,在动物细胞生物反应器中高密度地大量培养有用的动物细胞以生产珍贵生物制品的技术。动物细胞大规模培养技术是细胞工程发展中一项关键的技术。

六、展望

生物技术是一门新兴的高新技术,它的迅猛发展必将影响到科技、工业、农业、医药、食品等众多领域,它将有助于解决能源、粮食、

生物科学专业毕业论文【第四篇】

肝癌的生物治疗

摘要 生物 治疗 作为肿瘤治疗的新概念备受关注,已成为继手术、放疗、化疗后肿瘤治疗的第4种模式。随着 现代 分子生物学技术和基因工程技术的迅速 发展 ,为原发性开辟了全新的领域,并已取得了越来越多可喜的成果,分子靶向治疗、免疫治疗、基因治疗、内分泌治疗、干细胞治疗等显示出了良好的应用前景。就生物治疗在肝癌治疗中的研究和应用作一概述。

关键词 肝肿瘤·生物治疗

原发性肝癌(primary hepatocellular carcinoma,PLC)中90%为肝细胞性肝癌(hepatocellular carcinoma,HCC)。随着现代分子生物学技术和基因工程技术的迅速发展,为PLC的生物治疗开辟了全新的领域,生物治疗已成为继手术、放疗、化疗后肿瘤治疗的第4种模式,并显示出了良好的应用前景。主要包括:分子靶向治疗、免疫治疗、基因治疗、内分泌治疗、干细胞治疗等。

1 、分子靶向治疗

HCC的发病机制十分复杂,其发生、发展和转移与多种基因的突变、细胞信号传导通路和新生血管增生异常等密切相关,其中多个关键性环节,是进行分子靶向治疗的理论基础和重要的潜在靶点。分子靶向药物治疗PLC已成为新的研究热点。靶向治疗是将免疫分子、分子受体或脂质体等载体,与药物、放射性核素或生物毒素等偶联,靶向性杀伤肿瘤细胞。

针对表皮生长因子及其受体的靶向治疗

表皮生长因子(epidernal growth factor,EGF)是生长因子家族的主要成员之一,是含53个氨基酸残基的多肽激素。EGF可以强烈刺激细胞分裂,与胚胎的发生与生长、组织的修复与再生以及肿瘤的发生有密切的关系。EGF及其受体(EGFR)在PLC中存在过表达[1],与PLC的形成、发生、发展有密切关系[2-4]。抗EGFR药物如埃罗替尼(erlotinib)和西妥昔单抗(cetuximab),能够靶向性作用于肿瘤细胞表面的EGFR,有效阻断由EGFR介导的下游信号传导通路和细胞学效应,并诱导EGFR内化和降解。但近年多项临床研究显示,抗EGFR治疗对PLC患者的疗效并不显著[5],因而抗EGFR治疗在HCC的治疗上尚存在一定争议。

抗血管生成治疗

肿瘤生长、代谢、浸润转移和复发均与肿瘤的血液供应密切相关。PLC是一种富血管的恶性肿瘤,恶性程度高、生长速度快、转移范围广、复发率高。目前已证实肿瘤患者体内存在多种血管生成因子,其中血管内皮生长因子(vascular endothelial growth factor,VEGF)是体内作用最强的一种血管生成因子[6]。PLC患者VEGF血清水平显著的高于肝脏良性病变患者和正常人群[7]。缺氧是VEGF最强烈的诱导剂[8],由于肿瘤细胞在不断生长过程中对氧的需要不断增加,而肿瘤周围组织供氧量有限,因此导致肿瘤分泌大量VEGF,不断促使新生血管生成,以满足肿瘤生长的需求。此外,VEGF诱导新生的肿瘤相关血管结构不完善且通透性强,部分肿瘤细胞可以穿过血管壁进入血管向远处转移,故加速了肿瘤浸润和转移[9]。在PLC患者中,己发生转移的患者VEGF血清水平也较未发生转移的患者显著增高[9]。因此,VEGF在PLC的生长、浸润、转移、治疗和提示预后方面都有重要的作用。近年来,抗血管生成治疗在 HCC的治疗中占据了越来越重要的地位。目前临床上应用最广泛的抗血管生成药物包括VEGF抑制剂贝伐单抗(bevacizumab,Avastin)和Brivanib等。贝伐单抗是()一种新型的抗VEGF的人源化单克隆抗体,可结合VEGF并防止其与内皮细胞表面的受体(Flt-1和 KDR)结合而发挥作用、减少肿瘤内的血管形成,从而使肿瘤组织无法获得生长、增殖所需的血液、氧及其他养分,最终导致肿瘤坏死。近年来,有学者将贝伐单抗用于不能手术和介入治疗的晚期HCC患者,取得了较好的效果[10]。

信号传导通路抑制剂治疗

哺乳动物雷帕霉素靶蛋白(mammalian targetof rapamycin,mTOR)是哺乳动物磷脂酰肌醇/蛋白激酶(PI3k/Akt)通路的下游效应物,是一种丝氨酸/苏氨酸蛋白激酶,mTOR通过调节其他激酶,如40S核糖体6激酶(S6k),细胞周期依赖蛋白激酶(cyclin-dependent kinases,CDK) 和真核细胞翻译起始因子(4E结合蛋白,4EB) 的磷酸化,在蛋白质翻译过程中起重要调节作用。虽然与 mTOR有关的信号传导途径尚未完全阐明,一个很明显的事实是mTOR参与了蛋白质合成的调节,并与生长因子及其受体、细胞周期进程及膜运输相互作用[11]。生长因子激活 PI3k和Akt,然后通过mTOR介导大量蛋白激酶S6k、CDK、4EBP磷酸化,影响肿瘤细胞的存活和增殖[12]。VEGF通过介导激酶链 PI3k-Akt-mTOR调控血管内皮细胞的增生、存活和转移[13]。抑制 mTOR的功能可以消除由 PI3K/Akt通路介导的增殖信号,使细胞周期阻滞,抑制肿瘤生长,因此mTOR抑制剂作为一种抗肿瘤药物的作用最近再次引起关注。目前已有西罗莫司(Sirolimus)和依维莫司(Everolimus)2种商品化抗mTOR的药物。

多靶点抑制剂治疗

研究表明,Raf/MAPK-ERK激酶(MEK)和细胞外信号调节激酶(ERK)通路在HCC发病过程中有一定作用[14]。此外,HCC细胞系内过度表达的活化MEK1可通过阻止细胞凋亡而促进肿瘤的生长和存活。HCC是一种富血管性肿瘤,VEGF 可促进 HCC的发展和转移。因此,阻断通过Raf/MAPK-ERK的信号传导及VEGF的作用可能会对HCC起到治疗效果[15]。

分子靶向治疗在控制HCC的肿瘤增殖、预防和延缓复发转移以及提高患者的生活质量等方面可能具有独特优势;循证医学高级别证据已充分证明基因治疗药物可以延长晚期HCC患者的生存期,而联合其他治疗药物或方法有可能取得更好的效果。

2、 免疫治疗

目前免疫治疗对临床已生长的实体瘤的消除能力尚十分有限,对大量的肿瘤细胞也难以奏效,在临床上多用于手术、介入等方法的辅助治疗,或不能耐受化疗以及不能手术切除的HCC患者。包括主动免疫、非特异性免疫、过继免疫和联合免疫等。

主动免疫治疗

主动免疫治疗是指利用肿瘤细胞的特异性物质诱导患者产生特异性免疫,进而主动杀伤肿瘤细胞的过程,目前用于临床的PLC主动免疫包括HCC肿瘤疫苗、树突状细胞疫苗。

HCC肿瘤疫苗

是将自身或异体同种HCC细胞经过物理因素(如照射、高温)、化学因素(如酶解)及生物因素(如病毒感染、 基因转移)等的处理,改变或消除其致瘤性,保留其免疫原性,输入体内,刺激机体产生特异性抗肿瘤免疫,达到治疗PLC、预防HCC转移和复发的目的[16]。人类肿瘤免疫排斥抗原——黑色素瘤抗原家族(melanoma antigens,MAGEs)的发现,为肿瘤的免疫治疗提供了特异性抗原。由于MAGE抗原能被肿瘤组织特异性表达且可与人类白细胞抗原(human leucocyte antigen,HLA)1和HLA2形成抗原肽/HLA复合物,能被杀伤T细胞(cytotoxio T lymphocyte,CTL)识别和杀伤,提示MAGE抗原用于PLC的免疫治疗,开发肿瘤疫苗有着广阔的前景。

树突状细胞疫苗

树突状细胞(dendritic cell,DC)是体内功能最强的专职抗原递呈细胞 (antigen presentinz cell,APC),可以刺激初始T细胞增殖、诱导初始免疫应答,在抗肿瘤细胞免疫应答中发挥重要作用。肿瘤可使DC功能失常,使之处于非成熟状态。只有成熟的DC才能有效呈递抗原,以诱导机体产生有效的抗癌免疫应答[17]。目前用DC疫苗治疗HCC临床应用报道不多,有待进一步研究和探讨。

非特异性免疫治疗

非特异性免疫治疗的目的:肿瘤相关抗原在恶性肿瘤细胞上的表达比正常细胞高得多,并足以使这些抗原成为有效的攻击目标。另外,可通过激发免疫系统的免疫效应、修饰免疫应答等方法,非特异性地增强机体对肿瘤的免疫排斥能力。

常用非特异性免疫制剂包括:1)生物制剂,主要是重组的细胞因子,如IL、IFN、TNF等,既可单独使用,也可联合应用;2)微生物及其产物,如卡介苗、短小棒状杆菌、混合菌苗、溶链菌和高聚金葡素等;3) 胸腺肽;4)中医药。

过继免疫治疗

过继免疫治疗以输注自身或同种特异性或非特异性肿瘤杀伤细胞为主,不仅可纠正细胞免疫功能低下,而且可直接发挥抗肿瘤作用。包括:淋巴因子激活的杀伤细胞、肿瘤浸润的淋巴细胞、细胞毒性T细胞、细胞因子诱导的杀伤细胞等。

淋巴因子激活的杀伤细胞

淋巴因子激活的杀伤细胞 (lymphokine activated killer cell,LAK cell)是用高浓度 IL-2激活的肿瘤患者自体或正常供者的外周血单个核细胞,LAK细胞在体外有广谱的抗自体及异基因肿瘤的活性,可直接溶解、杀伤瘤细胞[18]。LAK细胞半衰期短,与 IL-2联合应用,可保持LAK细胞的活性,以保证疗效。IL-2/LAK细胞治疗对PLC根治性切除术后预防复发有较高的价值。

肿瘤浸润的淋巴细胞

肿瘤浸润的淋巴细胞 (tumor infiltrating lymphocyte,TIL)为肿瘤组织分离出的淋巴细胞经IL-2培养而产生,为自体肿瘤特异性杀伤细胞。目前认为,TIL 对肿瘤细胞的杀伤活性较LAK细胞高。

细胞毒T淋巴细胞

细胞毒T淋巴细胞(cytotoxic T lymphocyte,CTL)为特异性抗原体外诱导单核细胞克隆。CTL需第1信号系统(MHC,TCR)和第2信号系统(共刺激分子如 B7)激活,具有肿瘤杀伤特异性。 Haruta 等[19]报道,对晚期PLC患者而言,CTL的治疗效果要优于LAK细胞。

细胞因子诱导的杀伤细胞

细胞因子诱导的杀伤细胞 (eytokine-induced killer cell,CIK cell)为 MabCD3(抗 CD3单抗)、IL-1、IFN-γ和 IL-2培养的正常人外周血淋巴细胞。来源于CD3+CD56- T淋巴细胞具有广谱的抗肿瘤活性,在动物实验中有较好的治疗效果[20]。

联合免疫治疗

由于肿瘤生物学特性所具有的特殊免疫逃逸机制,导致单一性免疫治疗难以奏效,因此联合治疗成为目前临床免疫治疗的首选。在化疗过程中提高患者免疫力,对抗化疗药物免疫抑制的副作用,起到协同作用。

3 、基因治疗

研究表明,PLC发生有单中心及多中心,且与个体的基因缺陷有关。多基因、多阶段的癌基因或抑癌基因变构为PLC发生、发展的分子基础[21]。PLC的基因治疗是在基因调节水平上进行操作以杀伤或抑制肿瘤细胞的治疗方法。随着DNA 重组技术和转基因方法的不断完善,基因治疗的研究获得了迅猛发展。

抑癌基因 治疗

抑癌基因治疗是将具有正常功能的野生型抑癌基因(如 p53、p66等)通过各种途径转染至肿瘤细胞中,重建失活的抑癌基因功能,恢复细胞的正常生长表型,或者诱导细胞凋亡,从而达到控制肿瘤细胞生长的目的。p53基因是目前研究和应用得最多的一个,不仅可抑制癌细胞生长,还可诱导其凋亡;p16基因能阻抑细胞生长,但不诱发凋亡。p53反义核酸或向细胞内导入 wt-p53的基因治疗,可以抑制肿瘤的增殖,诱导凋亡,提高对药物的敏感性[22]。Okimoto等[23]将带有野生型p53基因的腺病毒载体Adomv p53通过肝动脉注入小鼠RCN-9结肠癌细胞肝转移模型,48 h后,经腹腔注射顺铂(CDDP),发现转移的PLC细胞广泛凋亡而肝脏功能并未受损。

自杀基因治疗

自杀基因疗法又被称为“病毒介导的酶/前体药物治疗(virus-directed enzyme/prodrug therapy,VDEPT)。原理是把某些病毒、细菌中特有的转换酶基因——自杀基因导入体内后,利用其产生的酶将无毒或低毒的药物前体转成细胞毒性代谢产物,从而杀死肿瘤细胞的基因治疗方法。目前,用于PLC基因治疗的自杀基因系统有单纯疱疹病毒胸腺嘧啶激酶(HSV2TK)基因/无环鸟苷(GVC)系统、胞嘧啶脱氨酶(CD)基因/5-氟胞嘧啶(5-FC)系统和嘌呤核苷酸磷酸酶(PNP)基因/氟达拉滨系统等。Harada等[24]以EB病毒基因组成的质粒载体与非病毒载体PAAD结合成杂交载体介导HSV-TK/GCV系统,能有效治疗实验小鼠PLC。

免疫基因治疗

免疫基因治疗通过基因重组技术增强机体的抗肿瘤免疫功能而达到治疗肿瘤的目的。免疫基因治疗可分为2类: 一种是将细胞因子基因导入PLC细胞,通过增强肿瘤细胞表面肿瘤抗原性、MHC 分子或黏附分子的表达而提高免疫原性;另一种是将细胞因子基因导入免疫活性细胞,如LAK细胞和树突状细胞等,通过直接刺激免疫效应细胞而达到增强免疫反应、抑制肿瘤生长的目的。目前,常用的细胞因子有IL-2、IL-12、IL-18、TNFα、IFN和集落刺激因子等。IL-12是作用较显著的细胞因子之一。Harada等[25]研究发现以IL-12基因治疗免疫抑制状态下的鼠PLC模型,可明显增加肿瘤细胞周围淋巴细胞的浸润并增强肿瘤特异性杀伤细胞的反应;IL-12可显著抑制肿瘤的复发。其他免疫基因治疗还包括IL-12和IL-2联合转染、IL-12和TNF、GM2CSF和IL-2 联合应用等。

反义基因治疗

PLC的发生、 发展 过程中许多癌基因及生长因子的基因产物大量表达,运用反义技术可以抑制这些产物的过度表达,从而抑制肿瘤的生长。根据PLC发病原因,导入反义寡核苷酸封闭PLC基因的表达或用正常抑癌基因取代突变抑癌基因。已报道设计针对VEGF、端粒末端转移酶、c-myc等癌基因的表达途径,诱导PLC细胞凋亡抑制其生长[26]。反义技术的主要缺点是目的基因的靶向性欠佳和半衰期较短,目前一般作为手术和化疗的辅助治疗方法。

联合基因疗法

PLC的发生涉及到多基因参与,因此单用一种基因治疗效果有限。不同的基因治疗策略联合应用可相互协同,增强抗肿瘤效果常采用免疫基因和自杀基因的联合治疗。Drozdz等[27]联合HSV-TK和IL-12治疗效果都明显优于单个基因治疗。

尽管目前有多种细胞因子、抑癌基因等可用于肿瘤的基因治疗,但总体来讲,效果尚不理想,因而寻找更多更具杀伤力的基因将大大推动基因治疗的研究和应用范围。基因治疗尚存在诸多理论上和技术上的问题,如靶向性、基因载体的转移效率、导入基因的持续表达、基因治疗的安全性等问题,还有待进一步完善[28]。

4、 内分泌治疗

在PLC患者中有33%的病例可查出雌激素受体,使用抗雌激素的三苯氧胺治疗PLC已有报道。有学者认为,大剂量口服三苯氧胺可作为逆转多药耐药基因的药物。然而,最近几次大样本的RCT和Meta分析却未发现有统计学意义[29]。

5 、干细胞治疗

干细胞移植现已成为恶性血液病、实体瘤等疾病的根治性方法之一。近年来,已有多个学者研究报道了造血干细胞参与了肝组织的再生和修复过程。它是利用血液成分分离装置处理血液,采取存在于末梢血中的造血干细胞进行移植的手段。由于PLC化疗敏感性较低,以现有水平,行造血干细胞、骨髓移植有一定困难。

6 、结语

总之,经过多年的研究,生物治疗技术已取得了越来越多可喜的成果,并显示出了广阔的应用前景。生物治疗技术在PLC的综合治疗中将发挥越来越重要的作用。我们有理由相信不久的将来,HCC的生物治疗会逐渐过渡成为一种常规的治疗方法,为PLC患者带来福音。

参考文献

[1] Daveau M, Scotfe M, Francois A, et al. Hepatocyte growth factor,transforming growth factor alpha,and thEir receptors as combined markers of prognosis in hepatocellular carcinoma[J]。 Mol Carcinog, 2003,36(3):130-141.

[2] Moser GJ, Wolf DC,Goldsworthy TL. Quantitative relationship between transform ing growth factor-alpha and hepatic focalphenotype and progression in female mouse liver[J]。 Toxicol Pathol, 1997,25(3):275-283.

[3] Kira S, Nakanishi T, Sumori S, et al. Expression of transforming growth factor alpha and epidermal growth factor receptor in human hepatocellular carcinoma[J]。 Liver, 1997,17(4):177-182.

[4] Decicco L A, Kong J, Ringer DP. Carcinogen-induced alteration in liver epidermal growth factor receptor distribution during the promotion stage of hepatocarcingenesis in rat[J]。 Cancer Lett, 1997,111(1-2):149-156.

[5] Vlahovic G, Crawford J. Activation of tyrosine kinases in cancer[J]。 Oncologist, 2003,8(6):531-538.

[6] Kraizer Y, Mawasi N, Seagal J, et al. Vascular endothelial growth factor and angiopoietin in liver regeneration[J]。 Biochem Biophys Res Commun, 2001,287(1):209-2l5.

[7] Zhao J, Hu J, Cai J, et al. Vascular endothelial growth factor expression in seFam of patients with hepatocellular carcinoma[J]。 Chin Med J(Eng1), 2003,116(5):772-776.

65 273432
");