高一数学科目知识点下学期【推荐4篇】

网友 分享 时间:

【引言】阿拉题库漂亮网友为您分享整理的“高一数学科目知识点下学期【推荐4篇】”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!

高一数学科目知识点下学期【第一篇】

向量的计算

1.加法

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2.减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=的反向量为0

加减变换律:a+(-b)=a-b

3.数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

向量的数量积的运算律

a·b=b·a(交换律)

(λa)·b=λ(a·b)(关于数乘法的结合律)

(a+b)·c=a·c+b·c(分配律)

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

高一下数学重点知识归纳【第二篇】

棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

高一数学下学期知识点整理【第三篇】

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

高一数学科目知识点下学期【第四篇】

集合与元素

一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;

而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

65 3183225
");