五年级数学积的近似数教案(最新10篇)

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“五年级数学积的近似数教案(最新10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

五年级数学积的近似数教案【第一篇】

2、能沟通知识之间的相互联系,提高解决问题的能力。

1、第52页第10题

先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?

(1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。

(2)再让学生根据分数与除法的关系列出算式,并写出得数。

(3)独立做下面两题

(4)交流

2、做第11题

(1)学生先独立练习

(2)引导比较a三道题目计算方法有什么相同?

b算式中选择的.除数有什么不同?

c从中还能想到些什么?

(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

3、做第12题练习后加强对比

(1)计算方法有什么相同的地方?

(2)算式中选择的被除数为什么不同?除数为什么相同?

(3)商的表示方法有什么不同?

4、做第13题练习后加强对比

要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。

5、思考题

方法一:可以根据每个分数中分子与分母的大小关系来判断。

方法二:通过画图帮助思考

五年级数学积的近似数教案【第二篇】

1、运用角色游戏活动,帮助幼儿建立初步的角色意识,丰富幼儿的生活经验。

2、复习区分圆形、三角形和正方形的外形特征,尝试描述图形的二维特征。

3、启发幼儿用礼貌用语,进行简单的交往,积累美好的情感体验。

重点:在游戏活动中积累生活经验,并愿意描述。

难点:区分物体图形、颜色的二维特征。

1、小熊两个;小鸭、小兔、小猫挂饰若干;各种形状的礼物若干。

2、供幼儿操作的圆形、三角形和正方形的、大小、颜色不同的饼干若干,贴有圆形、三角形和正方形标记的'盘子各一。活动设计:

一、引起兴趣:

1、今天,我们来做个游戏——扮小动物,你愿意扮谁就选一个挂饰挂在身上。

2、幼儿带上挂饰,你扮谁呀?(我是小兔、我是小鸭……)。

4、怎么去呢?买些什么礼物呢?

5、每位选一件礼物,你选的是什么?告诉你的好朋友。

6、出发——小熊家到了。(敲门进入)。

二、送礼物:

1、告诉小熊自己送的是什么礼物,并祝小熊生日快乐。

2、按小动物分组把礼物送给小熊。

3、请个别幼儿把礼物按图形分类。

三、小熊请客人吃饼干:

1、小黑和小白准备了点心给你们吃,(出示两盆饼干)小黑准备的是奶油饼干,小白准备的是葱油饼干。

3、小白请大家动脑筋:

(1)请小鸭吃红的三角形饼干;

(2)请小兔吃黄的圆形饼干。

(3)请小猫吃绿的正方形饼干。

四、结束部分:

1、我也准备了一份礼物(出示生日蛋糕),引导幼儿一起唱“生日快乐歌”。

2、时间不早了,我们该回家了,等到明年再来给小黑、小白过生日。为您服务学科吧。

五年级数学积的近似数教案【第三篇】

2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。

3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。

1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。

2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。

(一)动手操作,明确目标。

1、谈话导入,开门见山板书课题:

异分母分数加减法,出示学习目标,生齐读。

(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的。

加减法。

(2)通过直观的操作活动,理解异分母分数加减法的算理。

师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折。

纸研究解决解决异分母分数加减法的相关知识,有信心吗?

2、请看要求。

3、动手操作。

师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)。

4、学生汇报展示。

师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)。

5、提出问题,明确目标。

师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)。

想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)。

还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)。

师:从学生汇报的'异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。

(二)自主探索,理解算理。

1、自主探索进行算理探究。

师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:

结论1:(1/2+1/4=1/6)。

结论2:(二分之一加上四分之一等于四分之三)。

结论3:(二分之一加上四分之一等于六分之二)。

2、讨论验证。

师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?

生:在全班范围内展开讨论,充分发表各自的意见。

3、理解算理。

师:刚才有人说结果是(---),有人说是(---),还有人说是,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。

注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。

师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?

出示小数加法算式“+”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。

师:可不可以将百分位上的1加上十分位上的3?

生1:不可以。因为相同的数位没有对齐。

生2:小数点没对齐。

师:小数点没对齐也就是什么没对齐?——数位没对齐。

师:数位不同也就是什么不同?(计数单位)。

师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)。

4、小结算理。

谁来说究竟该怎样计算异分母分数的加法呢?

生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。

(三)迁移应用,巩固提高。

1、迁移应用,解决减法问题:

1/2-1/4=。

2、完成“试一试”

出示试一试的+与-,再次为学生提供尝试机会。

(学生练习后全班回馈交流,并规范书写格式。)。

师:通过刚才的学习,你发现异分母分数加减法应怎样计算?

xx。

五年级数学积的近似数教案【第四篇】

教材分析:

本课教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位.学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三,因此在教学真分数和假分数时,帮助学生从分数意义上理解和掌握新课的内容。

教学目标:

1.知识与能力:使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。

2.过程与方法:培养学生观察、比较、概括的能力。

3.情感、态度与价值观:培养学生数形结合的`数学思想。

教学重点:

理解真分数和假分数的意义及特征。

教学难点:

理解真分数和假分数的意义及特征。

教具准备:

课件。

教学过程:

1.什么叫分数?

2.说出下列各分数的分数单位以及包含的分数单位的个数。

3.分数与除法有什么关系?填一填。

讲授。

1.做一做第1题:根据真分数与假分数的意义分辨出哪些是真分数,哪些是假分数?在直线上表示出来。

2.练习十三的第1~3题:独立完成,集体订正。

3.作业:同步练习十三1-2题,选作3题。

这节课学习了什么知识,你有哪些收获?还有什么不明白的问题?

板书设计:

真分数和假分数。

分子比分母小的分数叫做真分数,真分数小于1。

分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。

五年级数学积的近似数教案【第五篇】

师:同学们已经学过求一个小数的近似数,请大家按要求写出下表中小数的近似数。

小结:求小数的近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。

2导入新课。

师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)。

(设计意图:由于求积的近似数所用的方法同求一个小数的近似数的方法完全相同,因此在教学新知前,组织学生复习、练习,让他们回忆求一个小数的近似数的方法,目的是为自主探索求积的近似数做好准备。所以,从求一个小数的近似数引出求积的近似数,过渡自然、顺理成章。)。

五年级数学积的近似数教案【第六篇】

:教材第24―25页例1、例2及“做一做”。

练习七的第1―4题。

1.初步学会列方程解比较容易的两步应用题。

2.知道列方程解应用题的关键是找应用题中相等的数量关系。

1. 使学生能用方程的方法解较简单的两步计算应用题。

2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。

3.能独立用列方程的方法解答此类应用题。

1.培养学生用不同的方法解决问题的思维方式。

2.渗透在多种方法中选择最简单的方法解决问题。

:列方程解应用题的方法步骤。

:根据题意分析数量间的相等关系。

1.口头解下列方程(卡片出示)

x-35=40 x-5×7=40

15x-35=40 20-4x=10

2.出示复习题

(1)读题,理解题意。

(2)引导学生用学过的方法解答

(3)要求用两种方法解答。

(4)集体订正:解法一:35+40=75(千克)

解法二:设原来有x千克饺子粉。

x-35=40

x=40+35

x=75

答:原来有75千克饺子粉。

1.教学例1

(1)读题理解题意。

(2)提问:通过读题你都知道了什么?

(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:

原有的重量-卖出的重量=剩下的重量

(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)

(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:

原有的重量-每袋的重量×卖出的袋数=剩下的重量

(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。

(7)引导学生根据等量关系式列出方程。

(8)让学生分组解答,集体订正时板书如下:

解:设原来有x千克饺子粉。

x-5×7=40

x-35=40

x=40+35

x=75

答:原来有75千克饺子粉。

(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。

小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)

2.教学例2

小青买2节五号电池,付出6元,找回元,每节五号电池的价钱是多少元?

(1) 读题,理解题意。结合生活实际帮助学生理解“付出”、“找回”等词的含义。

(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)

(3)组织学生分组讨论。

(4)学生自己解答,教师巡视,个别指导。

(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。

(6)教师总结订正。如果发现有列:2x=和2x+=6两种

方程的,教师要引导学生比较那种方法简单,并强调用较简单的方法解答。

3.学生自己学26页上面一段话,回顾上边的解题过程,总结列方程解应用题的一般步骤,总结后投影出示:

(1)弄清题意,找出未知数,并用x表示;

(2)找出应用题中数量间的相等关系;

(3)解方程;

(4)检验,写出答案。

4.完成26页的“做一做”

(1)学生独立解答

(2)集体订正,强化解题思路。

1.口答:列方程解应用题的关键是什么?

2.完成练习七第1题,在书上填写,集体订正。

3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。

:引导学生总结本节课学习了什么知识。

练习七第2题、3题。

列方程解应用题

解:设原有x千克饺子粉。

x-5×7=40

x-35=40

x=40+35

x=75

答:原来有75千克饺子粉。

例2 小青买2节五号电池,付出6元,找回元,每节五号电池的价钱是多少元?

解:设每节五号电池的价钱是x元。

8.5-4x =0.1

4x = 8.5-0.1

4x = 8.4

x = 2.1

答:第节五号电池的价钱是2.1元。

说课稿:

本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。

1.初步学会列方程解比较容易的两步应用题。

2.知道列方程解应用题的关键是找应用题中相等的数量关系。

1. 使学生能用方程的方法解较简单的.两步计算应用题。

2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。

3.能独立用列方程的方法解答此类应用题。

1.培养学生用不同的方法解决问题的思维方式。

2.渗透在多种方法中选择最简单的方法解决问题。

列方程解应用题的方法步骤。

:根据题意分析数量间的相等关系。

要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法――用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。

五年级数学积的近似数教案【第七篇】

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

理解和掌握循环小数等概念.

理解和掌握循环小数等概念.

(一)口算。

;=4times;=+=。

;==+=。

(二)计算。

教师提问:通过计算,你发现了什么?

(一)教学例7。

例710divide;3。

1.列竖式计算。

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10divide;3=……。

(二)教学例8。

例8计算;11。

1.学生独立计算。

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以;11=……。

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像……和……是循环小数.

5.简便写法。

……可以写作;。

……可以写作。

6.练习。

把下面各数中的循环小数用括起来。

………………。

(三)教学例9。

例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。

1.学生独立列式计算。

130divide;6=……。

asymp;(十克)。

答:小汽车大约装千克汽油.

2.集体订正。

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习。

计算下面各题,除不尽的先用循环小数表示所得的`商,再保留两位小数写出它的近似值.

28divide;;;。

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的也就是被除数能够被除数除尽.如3divide;2=小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的如10divide;3=……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

(一)计算下面各题,哪些商是循环小数?

(二)下面的循环小数,各保留三位小数写出它们的近似值.

…………。

…………。

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

(二)一列火车从南京到上海运行305千米,用了小时,平均每小时行多少千米?(保留两位小数)。

五年级数学积的近似数教案【第八篇】

书第54――55页,有趣的测量及试一试第1、2题。

1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

用多种方法解决实际问题。

探索不规则物体体积的测量方法。

不规则石头、长方体或正方体透明容器、水。

一、导入新课

老师出示准备好的不规则石快。

师:这个石块是什么形状的?(不规则)

什么是石块的体积?

你有什么困难?

二、教学新知

1.测量石块的体积

(1)小组讨论方案

师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?

(2)小组制定方案

(3)实际测量

方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

师:为什么升高的那部分水的体积就是石块的体积?

方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

师:为什么会有水溢出来?

这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

1.实际应用

(1)读题,理解题意。

(2)分析:你是怎么想的?

(3)学生尝试独立解答。

(4)集体反馈,订正。

让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2××=(立方分米)

三、课堂小结

学习了这节课,同学们有什么感受和体会?有什么提高?

1.书第55页第2题。

本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

2.学生再找一些实物,测量出体积。

板书设计:

有趣的测量

方案一:

方案二:

“底面积×高”的方法计算。

2××=(立方分米)

五年级数学积的近似数教案【第九篇】

已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。

本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。

1、在具体情境中进一步理解分数,体会分数的相对性。

教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。

在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。

2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。

除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。

3、经历知识的形成过程,探索分数的基本性质。

分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。

4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。

本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。

“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。

(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。

(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:

得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。

接着,引导学生从右向左观察,并练习:

得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。

在让学生观察其他几组分数,能得出同样的规律。

(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。

五年级数学积的近似数教案【第十篇】

一、用“四舍五入”的方法求出商的近似值。

保留整数保留一位小数保留两位小数。

÷。

16÷23。

÷。

二、下面是几种动物在水中的最高游速。(单位:千米/小时)。

请你计算它们的最高游速是多少千米/分。(结果保留三位小数)。

动物海狮海豚飞鱼。

速度(千米/小时)405064。

速度(千米/分)。

三、小强的.妈妈要将千克香油分装在一些玻璃瓶。

里,需要准备几个瓶?

四、用27吨甘蔗可以制成吨糖。

1、平均1吨甘蔗能制成多少吨糖?(得数保留两位小数)。

2、制1吨糖需要多少吨甘蔗?(得数保留两位小数)。

59 1906440
");