圆的面积教学设计【参考4篇】

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“圆的面积教学设计【参考4篇】”办公资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

圆的面积教案【第一篇】

教学目标

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重、难点:圆面积公式的推导与运用。

学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

教学过程

一、设疑导入,激发动机

1、请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

2、引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)

3、引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

二、动手操作,探索新知

1、猜想、引导,确定方法

师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

(学生可能会想到长方形、平行四边形、三角形、梯形等。)

师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?

(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

2、动手操作,尝试探究

师请同学们动手剪拼一下,看到底能拼成什么图形。

(学生动手操作,小组合作探究)

师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

3、课件演示,突破难点

师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

(1)圆与有近似的长方形有什么关系?

(2)把圆16等份和32等份后,拼成的图形有什么区别?

(3)如果等分份数仅需增加,结果会怎样?

师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

4、观察比较,导出公式

师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2

(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

5、尝试运用

出示例3,读题列式,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

2、完成第116页做一做的第1题。

3、看书质疑。

三、运用新知,解决问题

1、求下面各圆的面积,只列式不计算。

直径50分米

2、一块圆形铁板的半径是3分米,它的面积是多少平方分米?

3、小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、课堂作业

第118页的第3题和第4题。

圆的面积教学设计【第二篇】

教学目标:

1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

教学重难点:

圆面积公式的推导。

教学关键:

弄清圆与转化后的近似图形之间的关系。

教具:

多媒体计算机。

学具:

每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

教学过程:

一、复习旧知、设疑导入

同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

二、动手操作、探索新知

1、通过度量,猜想圆面积的大小。

用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

初步猜想:圆的面积相当于r2的3倍多一些。

3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

3、学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的。多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

三、看书质疑、自学例3,注意书写格式和运算顺序

四、运用新知,解决问题

1、一个圆的半径是5厘米,它的面积是多少平方厘米?

2、看图计算圆的面积。

3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据S=πr2求出面积。

(2)可测圆的直径,根据S=π(d/2)2求出面积。

(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

五、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

六、布置作业

七、板书设计

圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径

S=πr×r;S=πr2

圆的面积教案【第三篇】

教材分析

圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。

学情分析

学生对圆的特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:

教学目标

1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。

2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点和难点

教学重点:运用公式正确计算圆的面积。

教学难点:圆面积计算公式的推导过程。

小学数学圆的面积教案【第四篇】

教学目标:

1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

2、通过自主合作,培养学生独立思考、合作探究的意识。

3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

教学重难点:

组合图形的认识及面积计算、图形分析。

教具学具准备:

多媒体课件、各种基本图形纸片。

教学设计:

⊙创设情境,认识圆环

1.师:我们来欣赏一组美丽的图片。

课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

2.同学们,你们从图中发现了什么?(它们都是环形的)

3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

⊙探索交流,解决问题

1.画一画,剪一剪,发现环形特点。

(1)画一画。

让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

(学生按照要求画圆)

(2)剪一剪。

指导学生先剪下所画的大圆,再剪下所画的小圆。

问:剩下的部分是什么图形?(环形)

师:我们也称它为圆环。

(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

生明确:圆环是从外圆中去掉一个内圆得到的。

(4)借助图示认识圆环的各部分名称。

你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

①外圆:又名大圆,它的半径用R表示。

②内圆:又名小圆,它的半径用r表示。

③环宽:指外圆半径和内圆半径相差的宽度。

2.探究圆环面积的计算方法。

(1)小组讨论,怎样求圆环的面积?

(2)汇报讨论结果。

(3)小结:环形的面积=外圆面积-内圆面积。

设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

3.课件出示例2。

光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

(1)学生读题。

观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

(2)学生试做,指生板演。

(3)交流算法,学生将列式板书:

解法一

外圆的面积:πR2=×62

=×36

=(cm2)

内圆的面积:πr2=×22

=×4

=(cm2)

圆环的面积:πR2-πr2=-

=(cm2)

解法二

π×(R2-r2)=×(62-22)=(cm2)

答:圆环的面积是。

(4)比较两种算法的不同。

(5)小结:圆环的面积计算公式:S=πR2-πr2或S=π×(R2-r2)(板书公式)

(6)讨论。

知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

①知道内、外圆的面积,可以计算圆环的面积。

S环=S外圆-S内圆

②知道内、外圆的半径,可以计算圆环的面积。

S环=πR2-πr2或S环=π×(R2-r2)

③知道内、外圆的直径,可以计算圆环的面积。

④知道内、外圆的周长,也可以计算圆环的面积。

S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

S环=π×[(r+环宽)2-r2]

或S环=π×[R2-(R-环宽)2]

……

设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

⊙巩固练习,拓展提高

1.完成教材68页1题。

学生独立完成,然后在班内说一说解题思路。

2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

3.已知阴影部分的面积是75cm2,求圆环的面积。

[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=×75=(cm2)]

设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

⊙反思体验,总结提高

这节课我们学习了什么?你有哪些收获?还有什么问题?

⊙布置作业,巩固应用

1.完成教材72页8题。

2.找一些关于环形的资料读一读。

板书设计

圆环的面积

圆环面积=外圆面积-内圆面积

S环=πR2-πr2或S环=π×(R2-r2)

33 97721
");