小学数学知识点总结非常全面【汇集14篇】
小学数学知识点涵盖数字运算、几何图形、测量、数据处理等基础概念,如何更好地运用这些知识呢?以下是网友为大家整理分享的“小学数学知识点总结非常全面”相关范文,供您参考学习!
小学数学知识点总结大全(非常全面) 篇1
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
小学数学知识点总结大全(非常全面) 篇2
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学知识点总结大全(非常全面) 篇3
性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1、小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100 倍;小数点向右移动三位,原来的数就扩大 1000 倍⋯⋯
2、小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100 倍;小数点向左移动三位,原来的数就缩小 1000 倍⋯⋯
3、小数点向左移或者向右移位数不够时,要用“ 0″ 补足位。
(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外) ,分数的大小不变。(五)分数与除法的关系
1、被除数÷除数 = 被除数 / 除数
2、因为零不能作除数,所以分数的分母不能为零。
3、被除数 相当于分子,除数相当于分母。
小学数学知识点总结大全(非常全面) 篇4
小学生数学法则知识归类
(1)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(2)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(3)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(4)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(5)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(6)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(7)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(8)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(9)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(10)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(11)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(12)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(13)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(14)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(15)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(16)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(17)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(18)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(19)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(20)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(21)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(22)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(23)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(24)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(25)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(26)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(27)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
通过学习这些小学数学知识点总结大全(非常全面)的内容,小学生们能够建立起坚实的数学基础,为将来更深入的学习做好充分的准备。希望本文对小学生的数学学习有所帮助,同时也希望本文能够成为小学生数学学习的一个有用的参考工具。
小学数学知识点总结大全(非常全面) 篇5
整数
1、整数的意义
自然数和 0 都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的 1, 2, 3⋯⋯叫做自然数。
一个物体也没有,用 0 表示。 0 也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿⋯⋯都是计数单位。其中“一”是计数的基本单位。
10 个 1 是 10,10 个 10 是 100⋯⋯每相邻两个计数单位之间的进率都是 10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法: 从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其它数位连续有几个 0 都只读一个零。
6、整数的写法: 从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写
后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 亿。
⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表
示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 ⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比 5 小就舍去,是 5 或大于 5 舍去尾数向前一位进 1。这种求近似数的方法就叫做四舍五入法。8、整数大小的比较: 位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就
大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。
小学数学知识点总结大全(非常全面) 篇6
百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数 叫做百分数 , 也叫做百分率或百分比。 百分数通常用 “%”来表示。
百分号是表示百分数的符号。
2、百分数的读法: 读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法: 百分数通常不写成分数形式,而在原来的分子后面加上百分号“ %”来表示。
4、百分数与折数、成数的互化:
例如:三折就是 30%,七五折就是 75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是 65%。
5、纳税和利息:
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息 =本金×利率×时间
6、百分数与分数的区别主要有以下三点:
⑴ 意义不同。百分数是“表示一个数是另一个数的百分之几的数。 ”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1 米 是 5 米 的 20 %,不可以说“一段绳子长为 20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘ 1’平均分成若干份,表示这样一份或几份的数” 。分数不仅 可以表示两数之间的倍数关系,如:甲数是 3,乙数是 4,甲数是乙数的 ?;还可以表示一定的数量,如:犌 Э恕 米等。
⑵ 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
⑶ 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写
作:45%;百分数的分母固定为 100,因此,不论百分数 的分子、分母之间有多少个公约数, 都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、
假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
⑴ 小数化成分数:原来有几位小数,就在 1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑵ 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶ 一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,这个分数就不能化成有限小数。
⑷ 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
⑸ 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑹ 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数 ) ,再把小数化成百分数。
⑺ 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
小学数学知识点总结大全(非常全面) 篇7
常用单位换算:
1.长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2.面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
3.体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
4.重量单位换算
1吨=1000千克 1千克=1000克 1千克=1公斤
5.人民币单位换算
1元=10角 1角=10分 1元=100分
6.时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1/3/5/7/8/10/12月
小月(30天)的有:4/6/9/11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
7、时间的换算
1日=24小时 1时=60分 1分=60秒1时=3600秒
小学数学知识点总结大全(非常全面) 篇8
数的整除
1、整除的意义
整数 a 除以整数 b(b ≠ 0 ),除得的商是整数而没有余数, 我们就说 a 能被 b 整除,或者说 b 能整除 a 。除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为 0 时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为 0)。
2、约数和倍数
⑴ 如果数 a 能被数 b(b ≠ 0 )整除, a 就叫做 b 的倍数, b 就叫做 a 的约数(或 a 的因数)。倍数和约数是相互依存的。
⑵ 一个数的约数的个数是有限的,其中最小的约数是 1,最大的约数是它本身。
⑶ 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
⑴ 自然数按能否被 2 整除的特征可分为奇数和偶数。
① 能被 2 整除的数叫做偶数。 0 也是偶数。
② 不能被 2 整除的数叫做奇数。
⑵ 奇数和偶数的运算性质:
① 相邻两个自然数之和是奇数,之积是偶数。
② 奇数 +奇数 =偶数,奇数 +偶数 =奇数,偶数 +偶数 =偶数;奇数 – 奇数 =偶数,
奇数 – 偶数 =奇数,偶数 – 奇数 =奇数,偶数 – 偶数 =偶数;奇数×奇数 =奇数,奇数×偶数 =偶数,偶数×偶数=偶数。
4、整除的特征
⑴ 个位上是 0、2、4、6、8 的数,都能被 2 整除。
⑵ 个位上是 0 或 5 的数,都能被 5 整除。
⑶ 一个数的各位上的数的和能被 3 整除,这个数就能被 3 整除。
⑷ 一个数各位数上的和能被 9 整除,这个数就能被 9 整除。
⑸ 能被 3 整除的数不一定能被 9 整除,但是能被 9 整除的数一定能被 3 整除。
⑹ 一个数的末两位数能被 4(或 25)整除,这个数就能被 4(或 25)整除。
⑺ 一个数的末三位数能被 8(或 125)整除,这个数就能被 8(或 125)整除。
5、质数和合数
⑴ 一个数,如果只有 1 和它本身两个约数, 这样的数叫做质数(或素数) ,100 以内的质数有: 2、3、5、
7、 11、13、 17、19、23、 29、31、37、41、43、 47、53、59、 61、67、71、73、79、 83、89、97。
⑵ 一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4 、 6、 8、 9、 12 都是合数。
⑶ 1 不是质数也不是合数,自然数除了 1 外,不是质数就是合数。 如果把自然数按其约数的个数的不同分类,可分为质数、合数和 1。6、分解质因数
⑴ 质因数
每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数, 叫做这个合数的质因数,例如 15=3×5,3 和 5 叫做 15 的质因数。
⑵ 分解质因数
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
⑶ 公因(约)数
几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。
公因数只有 1 的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;②相邻的两个自然数互质;
③当合数不是质数的倍数时,这个合数和这个质数互质;
④两个合数的公约数只有 1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是 1。
⑷ 公倍数
① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数 1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
小学数学知识点总结大全(非常全面) 篇9
数的运算:
1、加数+加数=和 和-一个加数=另一个加数
2、被减数-减数=差 被减数-差=减数 差+减数=被减数
3、因数×因数=积 积÷一个因数=另一个因数
4、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
5.运算规则:
加法交换率: a+b=b+a 加法结合率:a+b+c=a+(b+c)
乘法交换率:ab=ba 乘法结合:abc=a(bc) 乘法分配率:(a+b)c=ac+bc
减法的性质:a-b-c=a-(b+c) 除法的性质:abc=a (b×c)
小学数学知识点总结大全(非常全面) 篇10
常用的数量关系
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、平均数: 总数÷总份数=平均数
6、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
7、相遇问题 追及问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
8、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
9、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
10、比例尺=图上距离÷实际距离
11、植树问题:间隔数×每个间隔的米数=一共的米数;
12、爬楼梯问题:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数.
13、成活率=成活棵数/总棵数×100%
14、合格率=合格数/总数×100%
15、出勤率=出勤人数÷总人数×100%
小学数学知识点总结大全(非常全面) 篇11
运算法则
(一)整数四则运算的法则
1、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数 +加数 =和 一个加数 =和-另一个加数
2、整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里, 0 和任何数相乘都得 0. 1 和任何数相乘都的任何数。
一个因数× 一个因数 = 积 一个因数 =积÷另一个因数
4、整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里, 0 不能做除数。因为 0 和任何数相乘都得 0,所以任何一个数除以 0,均得不到一个确定的商。被除数÷除数 =商 除数 =被除数÷商 被除数 =商×除数
5、乘方 :
求几个相同因数的积的运算叫做乘方。例如 3 ×3=32
(二)小数四则运算
1、小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2、小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算 .
3、小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几⋯⋯是多少。
4、小数除法:
小数除法的意义与整数除法的意义相同, 就是已知两个因数的积与其中一个因数, 求另一个因数的运算。
(三)分数四则运算
1、分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2、分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3、分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4、分数除法:
分数除法的意义与整数除法的意义相同。 就是已知两个因数的积与其中一个因数, 求另一个因数的运算。
(四)运算定律
1、加法运算定律
⑴ 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即 a+b=b+a 。
⑵ 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即( a+b)+c=a+(b+c) 。
2、乘法运算定律
⑴ 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即 a×b=b× a。
⑵ 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即 (a × b) ×c=a× (b ×c) 。
⑶乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即 (a+b) ×c=a×
c+b×c 。
⑷ 乘法分配律扩展:
两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即 (a-b) ×c=a× c-b ×c
3、减法运算定律
⑴ 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即 a-b-c=a-(b+c) 。
⑵ 一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即 a-b-c=a-c-b 。
4、除法运算定律
⑴ 一个数连续除以两个数,可以除以这两个数的集,即 a÷b÷c=a÷(b ×c) 。
⑵ 一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即 a÷b÷c=a÷ c÷ b。
5、其它
a-b+c=a+c-b
a-b+c=a+(b-c)
a÷ b×c=a× c÷ b
a÷ b×c=a÷ (b ÷c)
6、积的变化规律: 在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
推广:一个因数扩大 A 倍,另一个因数扩大 B 倍,积扩大 AB倍。
一个因数缩小 A 倍,另一个因数缩小 B 倍,积缩小 AB倍。
7、商不变性质 : 在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 m≠ 0 a ÷b=(a × m) ÷(b ×m)=(a÷m) ÷(b ÷m)
推广:被除数扩大(或缩小) A 倍,除数不变,商也扩大(或缩小) A 倍。
被除数不变,除数扩大(或缩小) A 倍,商反而缩小(或扩大) A 倍。
利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。如: 8500
÷200= 可以把被除数、除数同时缩小 100 倍来除,即 85÷2= ,商不变,但此时的余数 1 是被缩小 100 被后的,所以还原成原来的余数应该是 100。
(五)计算方法
1、整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2、整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3、整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4、整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数
的哪一位,商就写在哪一位的上面。如果哪一位上不够商 1,要补“ 0”占位。每次除得的余数要小于除数。
5、小数乘法法则:
先按照整数乘法的计算法则算出积, 再看因数中共有几位小数, 就从积的右边起数出几位, 点上小数点;如果位数不够,就用“ 0”补足。
6、除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“ 0”,再继续除。
7、除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“ 0”),然后按照
除数是整数的除法法则进行计算。
8、同分母分数加减法计算方法 :
同分母分数相加减,只把分子相加减,分母不变。
9、异分母分数加减法计算方法 :
先通分,然后按照同分母分数加减法的的法则进行计算。
10、带分数加减法的计算方法 :
整数部分和分数部分分别相加减,再把所得的数合并起来。
11、分数乘法的计算法则 :
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
12、分数除法的计算法则 :
甲数除以乙数( 0 除外),等于甲数乘乙数的倒数。
(六) 运算顺序
1、小数四则运算的运算顺序和整数四则运算顺序相同。
2、分数四则运算的运算顺序和整数四则运算顺序相同。
3、没有括号的混合运算 : 同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
4、有括号的混合运算 : 先算小括号里面的,再算中括号里面的,最后算括号外面的。
5、第一级运算:加法和减法叫做第一级运算。
6、第二级运算:乘法和除法叫做第二级运算。
小学数学知识点总结大全(非常全面) 篇12
小学数学图形计算公式
1、正方形: C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a2
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=6a2 体积=棱长×棱长×棱长 V=a3
3 、长方形:C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 、长方体:V:体积 s:面积 a:长 b:宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh V=SH
5 、三角形:s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 、平行四边形:s面积 a底 h高
面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 、圆形:S面积 C周长 ∏ d=直径 r=半径
(1)周长:C=∏d=2∏r
(2)面积:S=∏r^2
9、 圆柱体:v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 、圆锥:v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
11、扇形:S面积 L弧长 ∏ d=直径 r=半径 n=圆心角充数
面积:S=(n∏r^2)/360
弧长:L=( n∏r)/180
小学数学知识点总结大全(非常全面) 篇13
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长)
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
小学数学知识点总结大全(非常全面) 篇14
小数
1、小数的意义
把整数 1 平均分成 10 份、 100 份、 1000 份⋯⋯ 得到的十分之几、百分之几、千分之几⋯⋯ 可以用小
数表示。如 1/10 记作 ,7/100 记作 。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几⋯⋯
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一( );第二位叫百分位,计数单位是百分之一
( )⋯⋯小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如 是两位小数, 是三位小数
在小数里,每相邻两个计数单位之间的进率都是 10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是 10。
2、小数的读法: 读小数的时候,整数部分按照整数的读法读,小数点读作“点” ,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法: 写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小: 先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的
下一篇:返回列表