小学数学知识点总结【汇集4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“小学数学知识点总结【汇集4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

小学数学知识点总结【第一篇】

人教版小学数学知识点大全 基本概念

第一章 数和数的运算 一、概念 (一)整数

1、整数的意义

自然数和0都是整数。

2、自然数

我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。

一个物体也没有,用0表示。0也是自然数。

3、计数单位

一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。

10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

? 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 亿。

? 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。? 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。 (二)小数

1、小数的意义

把整数1平均分成10份、100份、1000份?? 得到的十分之几、百分之几、千分之几?? 可以用小数表示。如1/10记作,7/100记作。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

小数点右边第一位叫十分位,计数单位是十分之一();第二位叫百分位,计数单位是百分之一()??小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如是两位小数,是三位小数

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大??

5、小数的分类

? 纯小数:整数部分是零的小数,叫做纯小数。例如: 、 都是纯小数。

? 带小数:整数部分不是零的小数,叫做带小数。 例如: 、 都是带小数。

? 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 、 、 都是有限小数。

? 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: ?? ??

? 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

? 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: ?? ?? ??

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: ??的循环节是“ 9 ” , ??的循环节是“ 54 ” 。

? 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: ?? ??

? 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 ?? ??

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。 (三)分数

1、分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

4、比较分数的大小:

? 分母相同的分数,分子大的那个分数就大。

? 分子相同的分数,分母小的那个分数就大。

? 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。

? 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。

5、分数的分类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

? 真分数:分子比分母小的分数叫做真分数。真分数小于1。

? 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

? 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

6、分数和除法的关系及分数的基本性质

? 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。? 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。

? 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。

7、约分和通分

? 分子、分母是互质数的分数,叫做最简分数。

? 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。

? 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

? 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

? 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

8、倒 数

? 乘积是1的两个数互为倒数。

? 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

? 1的倒数是1,0没有倒数 (四)百分数

1、百分数的意义

表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

4、百分数与折数、成数的互化:

例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。

5、纳税和利息:

税率:应纳税额与各种收入的比率。

利率:利息与本金的百分率。由银行规定按年或按月计算。

利息的计算公式:利息=本金×利率×时间

6、百分数与分数的区别主要有以下三点:

? 意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。

? 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

? 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

7、数的互化

? 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

? 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

? 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

? 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

? 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

? 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

? 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除

1、整除的意义

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。

2、约数和倍数

? 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就(来自 :小学数学总结)叫做a的约数(或a的因数)。倍数和约数是相互依存的。

? 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

? 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、奇数和偶数

? 自然数按能否被2 整除的特征可分为奇数和偶数。

① 能被2整除的数叫做偶数。0也是偶数。

② 不能被2整除的数叫做奇数。

? 奇数和偶数的运算性质:

① 相邻两个自然数之和是奇数,之积是偶数。

② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

4、整除的特征

? 个位上是0、2、4、6、8的数,都能被2整除。

? 个位上是0或5的数,都能被5整除。

? 一个数的各位上的数的和能被3整除,这个数就能被3整除。

? 一个数各位数上的和能被9整除,这个数就能被9整除。

? 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

? 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

? 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

5、质数和合数

? 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

? 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

? 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

6、分解质因数

? 质因数

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

? 分解质因数

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

? 公因(约)数

几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。

公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;

②相邻的两个自然数互质;

③当合数不是质数的倍数时,这个合数和这个质数互质;

④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

? 公倍数

① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。

求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 二、性质和规律 (一)商不变的规律

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化

1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍??

2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍??

3、小数点向左移或者向右移位数不够时,要用“0"补足位。 (四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系

1、被除数÷除数= 被除数/除数

2、因为零不能作除数,所以分数的分母不能为零。

3、被除数 相当于分子,除数相当于分母。 三、运算法则 (一)整数四则运算的法则

1、整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

加数+加数=和一个加数=和-另一个加数

2、整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3、整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

在乘法里,0和任何数相乘都得和任何数相乘都的任何数。

一个因数× 一个因数 =积一个因数=积÷另一个因数

4、整数除法:

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

5、乘方:

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 (二)小数四则运算

1、小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

小学数学备考知识点总结【第二篇】

一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数化小数:分子除以分母。

二、百分数应用题

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

求乙比甲少百分之几:(甲-乙)÷甲

3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

4、已知一个数的百分之几是多少,求这个数。

部分量÷百分率=一个数(单位“1”)

5、折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣、成数=几分之几、百分之几、小数

八折=八成=十分之八=百分之八十=

八五折=八成五=十分之八点五=百分之八十五=

五折=五成=十分之五=百分之五十==半价

6、利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

7、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几——(甲-乙)÷乙×100%

(3)求甲比乙少百分之几——(乙-甲)÷乙×100%

小学数学知识点总结【第三篇】

1、如果是谁拿到最后一个谁就赢,那么公式就是:

总数÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第1题。

如果是谁拿到最后一个谁就输,那么公式就是

2、(总数-1)÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第2题

练习

1、箱子里装了16个球,乐乐和聪聪轮流从中拿1个球或者2个球,谁拿到最后一个球谁就获胜?如果聪聪先拿,第一次应该拿几个球才能确保获胜?每人轮流从中拿1个或者2个,那么作为聪聪就要首先保证他和乐乐拿的球数的和是2+1=3,也就是乐乐拿一个聪聪就拿2个,乐乐拿2个,聪聪拿1个,16÷(2+1)=5…… 1,所以聪聪先拿走剩下的一个,那么剩下的无论乐乐拿1个还是2个,聪聪只要保证和他的和是3个就可以了。

2、试卷:54张扑克牌,甲乙两人轮流拿,每人每次只拿1---4张,谁拿到最后一张谁就输,若甲先拿牌,怎样拿牌保证甲获胜

问题关键:是保证获胜,因此我们用的方法必须确保甲一定获胜。

要想保证甲获胜,首先得保证甲拿到的是第53张牌,那么乙肯定拿到是第54张牌,乙肯定就输了,而每人轮流是拿1-4张,那么为了确保获胜,必须保证甲和乙拿的牌数的和是5,也就是如果乙拿1张,甲就拿4张,乙拿2张,甲就拿3张,乙拿3张,甲就拿2张,乙拿4张,甲就拿1张,和是5,53里边有几个5呢?(54-1)÷(1+4)=10…… 3,所以甲先把多余的3张先拿走,剩下的无论乙怎么拿,只要每次保证每次拿的张数的和是5就可以了。

分数乘法意义

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

世界最大的数和最小的数

最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

没有最小的数字,但有最小的自然数,就是“0”。

小学数学知识点总结【第四篇】

第一单元长度单位

1、常用的长度单位:米、厘米。

2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

4、米和厘米的关系:1米=100厘米100厘米=1米

5、线段

⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

6、填上合适的长度单位。

小明身高1(米)30(厘米)

练习本宽13(厘米)

铅笔长17(厘米)

黑板长2(米)图钉长1(厘米)

一张床长2(米)一口井深3(米)

学校进行100(米)赛跑

教学楼高25(米)宝宝身高80(厘米)

跳绳长2(米)一棵树高3(米)

一把钥匙长5(厘米)

一个文具盒长24(厘米)

讲台高90(厘米)

门高2(米)教室长12(米)

筷子长20(厘米)

一棵小树苗高1(米)

小朋友的头围48厘米

爸爸的身高1米75厘米或175厘米

小朋友的身高120厘米或1米20厘米

第二单元100以内的加法和减法

一、两位数加两位数

1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

4、和=加数+加数

一个加数=和-另一个加数

二、两位数减两位数

1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

4、差=被减数-减数

被减数=减数+差

减数=被减数+差

三、连加、连减和加减混合

1、连加、连减

连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

2、加减混合

加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

四、解决问题(应用题)

1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

4、关于提问题的题目,可以这样提问:

①……。和……一共……。?

②……比……。.多多少/几……?

③……比……。.少多少/几……?

第三单元元角的初步认识

1、角的初步认识

(1)角是由一个顶点和两条边组成的;

(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

2、直角的初步认识

(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

(2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

(4)所有的直角都一样大

(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

23 273100
");