七年级下册数学知识点总结【精编13篇】
包括分数与小数的运算、比例、百分数、简单方程、图形的周长与面积、数据的收集与分析等基础知识。下面是阿拉网友整理编辑的七年级下册数学知识点总结相关范文,供大家学习参考,喜欢就分享给朋友吧!
七年级下册数学知识点总结汇总 篇1
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的`一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的'幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am—n(a≠0)。
2、此法则也可以逆用,即:am—n = am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)(a—b)的形式,然后看a2与b2是否容易计算。
学数学的方法有哪些
1注重打好数学基础
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
怎么样才能打好初一数学基础
第一,重视初一数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初一数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初一学生缺乏对概念的理解。
还有一部分初一同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初一数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。
七年级下册数学知识点总结汇总 篇2
本学期,我仍然担任初一X班的数学教学工作,这两个班的数学基础很不相同,针对他们的不同的基础我分别展开不同的教育,我从各方面严格要求自己,勤勤恳恳,兢兢业业,出满勤,干满点,身先士卒,为人师表。使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作作出总结,以发扬优点,克服不足,总结教训,促进教育教学工作更上一层楼。
一、抓思想教育,提高学生的数学学习兴趣
狠抓思想教育和学法执导,为学习提供持久的动力。本期以来,经常利用课前及课余、自习时间个别谈心对学生进行理想前途及学习目的教育,教育学生树立远大的理想和抱负,使学生有一个较为端正的学习态度和较大的学习动力。因此数学课学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。对少数学习困难的学生,给予特别的关注,我找来差生,了解原因,有些是不感兴趣,我就跟他们讲学习数学的重要性,跟他们讲一些有趣的故事,提高他们的兴趣;有些是没有努力去学,我提出批评以后再加以鼓励,并为他们定下学习目标,时时督促他们,帮助他们;一些学生基础太差,抱着破罐子破摔的态度,或过分自卑,考试怯场等,我就帮助他们找出适合自己的学习方法,分析原因,鼓励他们不要害怕失败,要给自己信心,并且要在平时多读多练,多问几个为什么。同时,一有进步,即使很小,我也及时地表扬他们。经过一个学期,绝大部分的同学都养成了勤学苦练的习惯,形成了良好的学风。另外,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气。学习成绩进步较大。
二、做好常规教学,认真做好教学五环节
积极参加每周四的数学教研活动,发挥集体智慧,弥补自己的不足,认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,积极创设各种教学情景,提高课堂教学效率。课后及时对该课作出总结,写好教学后记,并认真搜集每课的知识要点考点,易错点。
认真创设教学情景,提高课堂教学效率。努力上好每一节课,课前认真作好组织教学工作,积极创设教学情景调动学生的积极性,把课堂交给学生,作为师生合作的学堂,课堂上教师把解决问题的思路、方法、切入点、上堂演板、解决问题的过程都交给学生,学生能说的教师不说,学生会做的教师不讲。让学生自主学习、合作交流,加强师生交流,充分体发挥教师的主导作用和学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上对学生存在的共性问题和易混点、易错点老师做必要的点播,讲得尽量少、尽量精。同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,特别要关注学困生的学习要求,实行班级内分层教学。从学习目标,教学过程,课堂评价,布置作业进行分层。让各个层次的学生都得到提高。
加强批改作业,认真进行纠错。布置作业做到有针对性,有层次性。为了精编作业,对手头各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业格式作出具体的要求:格式规范,书写认真,步骤完整,答案准确。尤其强调书写的规范,书写干净,不乱涂乱画。养成良好的规范作业的习惯。最大限度的减少考试因不规范而影响成绩。对作业全批全改,及时批改,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。为了落实好纠错的效果,每个学生都建立纠错本,对平时作业,考试中出现的错误,要求弄清错误原因,认真补错。
做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们思想问题,让他们意识到学习的重要性和必要性,没有知识将来到社会上就无法生存,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自己的需要。
在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。为了把学困难生转化进一步搞好落实,在班级内部开展“一帮一”同进步活动,班级前30名同学帮助对应的后30名同学,比一比通过半学期的努力,谁和自己帮助的同学进步幅度大。还教育优秀同学,不要认为帮助后进生影响自己的学习,其实可以进一步促进和巩固自己的学习,使自己学的更深刻理解得更透彻,使优生帮助差生更加积极主动。同时对后进生的转化还要坚持“多表扬,少批评”的原则,发现他们的闪光点要及时进行表扬和鼓励,使他们增加自信,产生前进的动力,逐渐摆脱后进,进入学优生的行列。
三、一份耕耘、一份收获
一份耕耘,一份收获,本学期的教育取得了较好的成绩。学生的学习氛围较浓,学习兴趣较高,课代表认真负责,小组组长严把作业关,期中考试两个班的成绩都很优秀。学习任务顺利完成,学生基本掌握了本学期的数学知识。
四、存在的不足
存在的不足是,学生的知识结构还不是很完整,个别差生成绩仍然很差,基本处于自然境界,学生学习知识学得有点死。在下期的教育教学工作中,一定要认真总结经验,克服存在的不足,争取下期的教育教学工作取得更大的进步。
七年级下册数学知识点总结汇总 篇3
一、代数初步知识
1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a。
二、几个重要的代数式(m、n表示整数)
(1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2。
三、有理数
1、有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的.数也有自己的特性;
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数—小数>0,小数—大数<0。
四、有理数法则及运算规律。
1、有理数的运算法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2、有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c)。
3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
4、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5、有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
7、有理数乘方的法则:
正数的任何次幂都是正数;
七年级下册数学知识点总结汇总 篇4
第六章实数
【知识点一】实数的分类
1、按定义分类:
2、按性质符号分类:
注:0既不是正数也不是负数。
【知识点二】实数的相关概念
1、相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。0的相反数是0。
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。
(3)互为相反数的两个数之和等于0。a、b互为相反数a+b=0。
2、绝对值|a|≥0。
3、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
4、平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。
(2)一个正数a的正的平方根,叫做a的算术平方根。a(a≥0)的算术平方根记作。
5、立方根
如果x3=a,那么x叫做a的立方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。
【知识点四】实数大小的比较
1、对于数轴上的任意两个点,靠右边的点所表示的数较大。
2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
3、无理数的比较大小:
【知识点五】实数的运算
1、加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负。几个数相乘,有一个因数为0,积就为0。
4、除法
除以一个数,等于乘上这个数的倒数。两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0。
5、乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1、有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字。
2、科学记数法:
把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法。
第七章平面直角坐标系
一、知识网络结构
二、知识要点
1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“>”、“<”或“=”)
8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。
11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a = b ;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。
13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。
14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。
第八章二元一次方程组
1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
第九章不等式与不等式组
1、用不等号表示不等关系的式子叫不等式,不等号主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知数的不等式中,使不等式成立的`未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
3、不等式的性质:
①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
用字母表示为:如果,那么;如果,那么;
如果,那么;如果,那么。
②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。
7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。
七年级下册数学知识点总结汇总 篇5
本学期我担任七年级(3)(4)班数学教学工作,一学期的工作即将过去,回顾一学期以来的工作,有成功也有不足,为更好的总结得失,迎接未来,现将本学期的数学教学工作总结如下:
一、端正态度,提高思想认识水平。
认真学习《初中数学新课程改革标准》,坚定不移的实施新课程改革,钻研新课程改革下数学教学方法,提高自己的业务能力和教学水平。做到热爱教育事业,热爱自己的学生,认真对待教学工作中的每一个细节,虚心向其他教师请教教学中出现的问题,结合教材内容、本校的实际条件和学生的实际情况,有计划,有组织,有步骤地扎实开展教学工作。
二、精心设计教学情境,营造良好的教学气氛。
课堂教学是教学过程中最为重要的一个环节,要取得较好的课堂教学效果,必须营造一种轻松的、积极的、向上的气氛,激发学生的求知欲。所以在课前的准备中,我都会考虑到如何给学生营造一种轻松愉快的环境,以此调动学生的积极性。
根据教学内容,我设计形式多样化的导学案,激发了学习兴趣,提高了听课的`积极性,促进探究的主观能动性,增强知识掌握的牢固性,培养了学生探究思维的能力。同时,也提高了课堂教学的效率,反馈练习中效果比较明显。
三、精心布置练习和作业,做好记录和分析。
在进行课前准备时,我不仅设计教学内容和教学形式,同时还根据不同水平层次的学生设置习题,力求做到有针对性,尽可能的让更多学生参与到课堂练习,让他们有能力完成这些练习,从而提高他们的自信心。
对于作业的批阅,我采用了和以往不同的作法。只要时间允许,我都会把批阅安排到教室进行,同时把学生叫上来当面进行批改,对于做对的习题或一些创新的思路我会予以肯定。对于存在问题的作业,我会帮助学生指出来,并给他分析产生问题的原因,同时给予一定的辅导,引导他们自己独立完成正确的解题过程。虽然在时间上会花费比较多一点,但效果却是不言而喻的。
四、搞好分层教学,加强课后辅导。
每个学生的能力和基础都是不一样的,这是客观存在的事实。因此在教学中我很注意给不同类型学生施加不同的压力,给他们分配不同的目标任务。对于优等生主要是加大训练的难度,以拓展他们的思维能力。对中等生则主要是提供不同的题型,适当增加难度,训练他们的思维,拓展他们的见识,以提高解题的能力和技巧。对于后进生,我主要是对他们进行基础知识辅导,帮助他们树立学习信心,激发他们的求知欲望。
五、反思存在的问题,总结经验教训。
虽然在教学中,我付出了很多时间和精力,也取得了不错的成绩,但还是存在一些问题。首先在解决中下层学生的解题能力上突破不大;二是后进生的学习积极性并没有真正调动起来,在对试卷分析时并没有针对部分较难的题型进行多重练习,造成考试中出现一些不必要的丢分现象。
总之,一学期的教学工作,既有成功的喜悦,也有失败的困惑,虽然取得了一定的成绩,但也存在不少的缺点。本人今后将在教学工作中,汲取别人的长处,弥补自己的不足,力争取得更好的成绩。
七年级下册数学知识点总结汇总 篇6
第一章
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。平方差公式.两数和与这两数差的积,等于它们的平方之差完全平方式:.
第二章一、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等二、对顶角
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
4、同位角、内错角、同旁内角、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行
平行线的性质
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补
七年级下册数学知识点总结汇总 篇7
本学期我担任七年级179班数学教学工作。由于是新课标教学,无论是教学内容还是教学观念方法方式方面都有新的挑战,于是边学边教、边做边适应地走进新课标。现将一学期来的成与败总结如下:
一、主要工作及取得的成绩:
1、做好课前准备和课后反思工作
面对挑战,我决心立志要争取在教学教研方面有所成就。于是我每天花3小时以上时间认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据本班同学的具体情况制定课时计划。每一课都做好充分的准备。为了使学生易懂易掌握,我还根据教材制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教后反思,并进行阶段总结,即每章一总结,期中、期末一总结。
2、把好上课关,提高课堂教学效率、质量。
新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。一位老师说过“新课标老师轻松多了”。我原来不同意他的看法,后来我终于明白了,课外要花多些时间精力,而课堂上老师一定要“轻松”,不能太忙。新课标倡导“自主、合作、探究”的学习方式。我在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。由于学生乐学,兴致高昂,通常学生获得的知识都超过教材和我备课的范围。
3、虚心请教同组老师。
在教学上,有疑必问。由于没有新课标教学经验,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。本学期我将自己在备课中想到的好点子以及遇到的问题整理成“教学反思录”。
七年级下册数学知识点总结汇总 篇8
第七章 平面图形的认识(二) 1
第八章 幂的运算 2
第九章 整式的乘法与因式分解 3
第十章 二元一次方程组 4
第十一章 一元一次不等式 4
第十二章 证明 9
第七章 平面图形的认识(二)
一、知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理 性质定理
条件 结论 条件 结论
同位角相等 两直线平行 两直线平行 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,
则。
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。
第八章 幂的运算
幂(power)指乘方运算的结果。an指将a自乘n次(n个a相乘)。把an看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有
aman=am+n (同底数幂相乘,底数不变,指数相加)
am÷an=am-n (同底数幂相除,底数不变,指数相减)
(am)n=amn (幂的乘方,底数不变,指数相乘)
(ab)n=anan (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)
a0=1(a≠0) (任何不等于0的数的0次幂等于1)
a-n=1/an (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)
科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法。
复习知识点:
1.乘方的概念
求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
第九章 整式的乘法与因式分解
一、整式乘除法
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。ac5bc2=(ab)(c5c2)=abc5+2=abc7 注:运算顺序先乘方,后乘除,最后加减
单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc 注:不重不漏,按照顺序,注意常数项、负号。本质是乘法分配律。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差。(a+b)(a-b)=a2-b2
完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍。(a±b)2=a2±2ab+b2
因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式。
因式分解方法:
1、提公因式法。 关键:找出公因式
公因式三部分:①系数(数字)一各项系数最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式。需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项。
注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。
2、公式法:①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方。
③x3-y3=(x-y)(x2+xy+y2) 立方差公式
3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止。
弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差
添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
第十章 二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns) 。
2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。
3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
第十一章 一元一次不等式
一元一次不等式
重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念
1. 不等式:
用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式。用“≠”表示不等关系的式子也是不等式。
要点诠释:
(1) 不等号的类型:
① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;
(2) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:
由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5。不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:
不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质
基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果 ,那么 。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果 ,并且 ,那么 (或 )。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果 ,并且 ,那么 (或 )
要点诠释:
(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;
(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;
(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;
(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
知识点三:一元一次不等式的概念
只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0。这样的不等式,叫做一元一次不等式。
要点诠释:
(1)一元一次不等式的概念可以从以下几方面理解:
①左右两边都是整式(单项式或多项式); ②只含有一个未知数;
③未知数的最高次数为1。
(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。
知识点四:一元一次不等式的解法
1.解不等式:
求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
要点诠释:
(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用
(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:
在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。
要点诠释:
在用数轴表示不等式的解集时,要确定边界和方向:
(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左
规律方法指导(包括对本部分主要题型、思想、方法的总结)
1、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为 或 的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。
解一元一次不等式的一般步骤及注意事项
变形名称 具体做法 注意事项
去分母 在不等式两边同乘以分母的最小公倍数 (1)不含分母的项不能漏乘
(2)注意分数线有括号作用,去掉分母后,如分子是多项式,要加括号
(3)不等式两边同乘以的数是个负数,不等号方向改变。
去括号 根据题意,由内而外或由外而内去括号均可
(1)运用分配律去括号时,不要漏乘括号内的项
(2)如果括号前是“—”号,去括号时,括号内的各项要变号
移项 把含未知数的项都移到不等式的一边(通常是左边),不含未知数的项移到不等式的另一边 移项(过桥)变号
合并同类项 把不等式两边的同类项分别合并,把不等式化为 或 的形式
合并同类项只是将同类项的系数相加,字母及字母的指数不变。
系数化1 在不等式两边同除以未知数的系数 ,若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;
(1)分子、分母不能颠倒
(2)不等号改不改变由系数 的正负性决定。
(3)计算顺序:先算数值后定符号
4、将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实。
5、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。
6、常见不等式的基本语言的意义:
(1) ,则x是正数; (2) ,则x是负数;
(3) ,则x是非正数; (4) ,则x是非负数;
(5) ,则x大于y; (6) ,则x小于y;
(7) ,则x不小于y; (8) ,则x不大于y;
(9) 或 ,则x,y同号;(10) 或 ,则x,y异号;
(11)x,y都是正数,若 ,则 ;若 ,则 ;
(12)x,y都是负数,若 ,则 ;若 ,则
第十二章 证明
教学目标:
1.掌握定义、命题、定理、逆命题、互逆命题等概念,知道一个命题是真命 题,它的逆命题不一定是真命题。
2.基本事实是其真实性不加证明的真命题,弄清真命题与定理的区别。
3.会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。
重点:定义、命题、定理、逆命题、互逆命题等概念的理解与运用
难点:会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。
内容:
1.以基本事实:“同位角相等,两直线平行”证明: (1)“内错角相等,两直线平行”、“同旁内角互补,两直线平行”、“平行于同一条直线的两条直线平行”
2.基本事实:“过直线外一点,有且只有一条直线与这条直线平行”
“两直线平行,同位角相等”
证明:
(1)两只相平行,内错角相等
(2)两只相平行,同旁内角互补
(3)三角形内角和定理”
(4)直角三角形的两个锐角互余
(5)有两个锐角互余的三角形是直角三角形
(6)三角形的外角等于与它不相邻的两个外角的和
七年级下册数学知识点总结汇总 篇9
第六章实数
【知识点一】实数的分类
1、按定义分类:
2、按性质符号分类:
注:0既不是正数也不是负数。
【知识点二】实数的相关概念
1、相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。0的相反数是0。
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。
(3)互为相反数的两个数之和等于0。a、b互为相反数a+b=0。
2、绝对值|a|≥0。
3、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
4、平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。
(2)一个正数a的正的平方根,叫做a的算术平方根。a(a≥0)的算术平方根记作。
5、立方根
如果x3=a,那么x叫做a的立方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。
【知识点四】实数大小的比较
1、对于数轴上的任意两个点,靠右边的点所表示的数较大。
2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
3、无理数的比较大小:
【知识点五】实数的运算
1、加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负。几个数相乘,有一个因数为0,积就为0。
4、除法
除以一个数,等于乘上这个数的倒数。两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0。
5、乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1、有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字。
2、科学记数法:
把一个数用(1≤”、“ 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
3、不等式的性质:
①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
用字母表示为:如果,那么;如果,那么;
如果,那么;如果,那么。
②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。
7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。
七年级下册数学知识点总结汇总 篇10
在教学工作中采取了有效措施,从以下几个方面汇报:
一、教学常规落实
严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结协作。备好每一节课,根据学生实际合理利用教学资源,上好每一节课。布置作业做到有的放矢,有针对性,有层次性。认真批改作业。同时对学生的作业批改及时、有效,分析并记录学生的作业情况,将他们在作业过程出现的问题作出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的指导. 积极做好学困生转化工作。对学习过程中有困难的学生,及时给予帮助,帮助他们找到应对措施,帮助他们渡过难关。
二、积极参与教研活动
积极参与学校组织的数学教研活动,认真听课评课,通过评课中,提高认识,不断提高教学水平。日常教学中,主动和同组老师共同探讨教学工作,共同提高。适应新时期教学工作的要求,各方面严格要求自己,认真钻研新课标理念,改进教法,坚持做好业务学习笔记,和教后反思,搞好课题研究。
三、业务学习
积极探索“三疑三探”课堂教学模式。认真学习业务理论,写好的业务笔记,提高自己的理论水平,丰富自己的业务知识;积极参加一切课题研究活动,敢想敢干,敢于创新,不怕失败。在学习策略上及时指导学生,培养思维,方法技巧,提升能力。及时对教学活动作出反思,每周写出一至两个教学反思,真正体会自己的优缺点,做到有的放矢,进一步提高自己。充分备好每个教案,做到备学生,备教材,每周及时上传四个教案和四个课时作业。发挥多媒体教学优势,积极利用和制作课件,提高自己电化教学能力。
四、将“多媒体”渗透于教学
充分利用课件,增强上课技能,提高教学质量,突破难点。使教学清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,使学生积极参与,给学生提供展示自我的平台,使不同层次学生都得到提高。
五、把自成教育落实到实处
基本出发点是促进学生全面、持续、和谐地发展。培养激发学生兴趣,保护自尊,帮助学生建立自信,树立克服困难的勇气和信心。在上学期基础上,学生的数学知识需进一步加强;数学思维创新能力待进一步提升。结合教学,发展学生合情推理和演绎推理能力,提高分析问题解决问题能力;学习习惯上进一步培养良好的行为习惯。独立思考,及时总结,纠错改错,提前预习,合作交流,探究学习等习惯,应得到进一步强化。遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。面向全体学生,实现人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。使学生通过学习数学得到成功的体验。
六、提高学科教育质量的主要措施:
1.落实更新教育教学理念。渗透“自成教育”理念。认真学习教育教学理论,落实课标理念。让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。改进教学方法,充分利用多媒体,挂图,实物等创设情景进行教学,力求课堂教学的多样化、生活化和开放化,师生互动、生生互动,构建高效课堂。运用新课程标准的理念指导教学,积极更新教育理念,关心爱护学生,公平对待学生。
2.做到教学相长。认真研读新课程标准,钻研新教材,根据新课程标准,扩充整合教材内容,及时反馈学习信息,搞好学生学习评价,教会学生学习,渗透数学思想方法,做教学组织者,学生的引导者。
3.培养学生兴趣。兴趣是最好的老师,激发学生的兴趣,给学生适时介绍数学家,数学史,数学趣题,补充数学相应课外思考题,扩充资源,通过各种途径培养学生的兴趣。
4.创设和谐教学氛围。引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
5.关注学生情感态度、学习方法。引导学生积极归纳解题规律,引导学生一题多解,通过变式训练,培养学生透过现象看本质,提高学生举一反三的能力。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练。提高学生素质,培养学生的发散创新思维,提高学习效率,做到事半功倍。
6.重视学习习惯培养。教育关键就是培养习惯,良好的学习习惯有助于学生稳步提高学习成绩,发展学生的非智力因素,促进学习兴趣与良好习惯培养。
7.做好课题研究。开展丰富多彩的课外活动,开展对中考题的研究,课外调查,操作实践,以优带差,培养学生探究合作能力,师生共同提高。
8.实行分层教学。关注各类学生,布置作业设置A、B、C三等,分类分层布置,因人而异,课堂上照顾好好、中、差三类学生。搞好优生提升能力,扎实打牢基础知识,及时对学困生辅导,跟上学习步伐。
9.开展课题学习。积极引导学生阅读课外书,促进学生自主、合作,探究学习,把学生带入研究的学习中,学会探究,合作,自主学习,拓展学生的知识面,培养兴趣,提高能力。
10.充分运用多媒体信息技术。充分利用多媒体信息技术增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等。重视利用计算器,丰富学习资源。
11.培养学生反思性学习能力。作为教师,教学中要重视反思,目的是改进教学,真正实施有效教学。学生同样也要学会反思,从反思中体会知识的形成过程,明确自已知识的缺漏,知道哪里掌握的还不扎实,在分析理解题目过程中犯了哪些错误等等。本学期我让每个学生准备了一个错题集,将每次考试的错题工工整整抄上,标明错误的原因,再用正确的方法二次订正,在每次复习前,复习自已的错题集,是每一个学生必须养成的习惯。现在,部分学生由错题中学会了分析解题的方法技巧,还会根据这些错题举一反三的自我进行变式训练,大大提高了学生的解题能力,更培养了他们认真审题、自我反思的好习惯。
七年级下册数学知识点总结汇总 篇11
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:
①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
实数
一、实数的概念及分类
1、实数的分类正有理数有理数零有限小数和无限循环小数
负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,2等;
π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于
零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
(2)开平方的定义:求一个数的平方根的运算,叫做开平方。开平方运算的被开方数必须是非负数才有意义。
3的平方等于9,9的平方根是?
(3)平方与开平方互为逆运算:
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;
学习方法
注重预习培养自学能力
在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
数学概念
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。
比如,儿童对自然数,对运算结果——和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图像来表示,比如函数y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之,数学概念是在人类历史发展过程中,逐步形成和发展的。
七年级下册数学知识点总结汇总 篇12
朱自清说过时间啊它有脚,来去匆匆,抓也抓不住,仿佛刚刚还是开学时刻,却转眼已经结束一个月之余。本学年我带初一(3)(4)班的数学课,(3)班是一个相比较之下比较好的班级,学习自觉性高,有着良好的思维习惯。(4)班相比较来说比(3)班弱,学生的基础不牢固,不能坚持长时间学习,学习自觉性不高。回顾这一学期的教学工作,我有经验,也发现了不足。下面我就把上一个学期的工作做一个小结。
一、认真备课,上课。
在本学期的教学工作中,坚持以培养学生的主观能动性为中心的教学思想,注重学生的个性发展,重视激发学生的自主能动性,认真上课、上课,及时批改作业,重在订正,作业中发现的问题及时讲评,及时了解学生的学习情况,以便课后辅导工作有针对性。严格要求学生,使学生学有所得,不断提高。同时也让自己在课外之余多看看《中数参》,从而不断提高自己的教学水平。
二、虚心求教,强化自我
七年级的主课相比较少,所以在这一年的工作中最强烈的感觉就是课多。在实际工作中就得实干加巧干。作为一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。所以在课外之余我订阅了《中数参》进行教学参考,尽量做到博采众家之长为己所用,在让先进的理论知道自己的教学实践的同时,也在自己的教学过程中验证这种理论。
三、教学中存在的问题
1、教材挖掘不深入。
2、教发不够灵活,对学生的引导、启发不足。
3、教学反思不够。
4、差生未抓在手。
四、今后的努力方向
1、加强学习,学习新课标下新的教学思想。
2、学习新课标,挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科教师先进的教学方法和教学理念。
4、加强转差培优力度。
5、加强教学反思,加大教学投入。
七年级下册数学知识点总结汇总 篇13
一.整式
1.单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
③一个单项式中,所有字母的指数和叫做这个单项式的次数。
2.多项式
①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
3.整式单项式和多项式统称为整式。
二.整式的加减
1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
三.同底数幂的乘法
同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
四.幂的乘方与积的乘方
1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
2.略
3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
五.同底数幂的除法
1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n)。
2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即 ,如 ,(-=1),则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;
下一篇:返回列表