数学7年级下册知识点 七年级下册数学知识点5篇
【导言】此例“数学7年级下册知识点 七年级下册数学知识点5篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
初一数学下册知识点总结【第一篇】
1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:=×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的。数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10.合并同类项法则:系数相加,字母与字母的指数不变。
11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
七年级下册数学知识点总结【第二篇】
一、有理数
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
注:黑体字为重要部分
二、整式的加减
知识网络:
概念、定义:
1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数(coefficient)。
3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
三、一元一次方程
知识网络:
概念、定义:
1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6、把等式一边的某项变号后移到另一边,叫做移项。
7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本 利率=利润÷成本×100%
售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
四、图形初步认识
知识网络:
概念、定义:
1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。
5、几何体简称为体(solid)。
6、包围着体的是面(surface),面有平的面和曲的面两种。
7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
8、点动成面,面动成线,线动成体。
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance)。
14、角∠(angle)也是一种基本的几何图形。
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary angle),即其中的每一个角是另一个角的余角。
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等。
初一下册数学复习资料【第三篇】
概念知识
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形
叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
七年级下册数学知识点总结【第四篇】
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:
①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
实数
一、实数的概念及分类
1、实数的分类正有理数有理数零有限小数和无限循环小数
负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,2等;
π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于
零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
(2)开平方的定义:求一个数的平方根的运算,叫做开平方。开平方运算的被开方数必须是非负数才有意义。
3的平方等于9,9的平方根是?
(3)平方与开平方互为逆运算:
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;
学习方法
注重预习培养自学能力
在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
数学概念
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。
比如,儿童对自然数,对运算结果——和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图像来表示,比如函数y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之,数学概念是在人类历史发展过程中,逐步形成和发展的。
七年级下册数学知识点梳理【第五篇】
三角形与多边形
三角形内角和为180°
构成三角形满足的条件:三角形两边之和大于第三边。
三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)
等面积法:三角形面积底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高底高,知道其中三条线段就可求出第四条。
等高法:高相等,底之间具有一定关系(如成比例或相等)
三角形的特性:三角形具有稳定性
n边形的内角和公式是S=180(n-2) ,外角和恒为360。