抽屉原理教案【优质8篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“抽屉原理教案【优质8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
抽屉原理教案【第一篇】
作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。
又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
抽屉原理教案【第二篇】
我听了覃老师的《抽屉原理》一节课后,受益匪浅,本节课覃老师着眼于学生的发展,凸显数学学习的生活化;注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学,引导学生观察比较。同时,还注意学生获取知识的思维过程,体现教师的引导下学生的主动探究过程。
这一堂课中有以下几个亮点,是值得我学习的地方:
1.在新课的学习中,覃老师着力调动学生的学习积极性,让全体同学都主动参与到学习中,并给予学生上台操作演示的机会。在整个课堂教学中,覃老师并没有完整地小结公式之类的规律,更多的是引导学生学会学习,懂得思考问题的方式方法,从“无序”走向“有序”,激发了学生学习数学的参与热情,真正促进了学生思维的发展。
2.努力培养学生的数学情感,让学生学习生活中的数学,做到让数学生活化,使学生从生活开始、在生活中学、到生活中用。同时又不乏情趣调动学生学习积极性和主动性,以此培养学习数学的兴趣。
根据学生生活经验,教学中选取了学生熟知的身边的实例活动,密切了数学与学生现实生活的联系,调动了学生原有的生活经验,使学生觉得数学就在自己的身边。这样就激发了学生探究问题的强烈欲望,激活了学生的思维,发挥了学生的主动性。引导学生把所学知识运用到日常生活中,并延伸到课堂外,让学生继续探寻知识,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。
根据教学设计多媒体课件应用恰当好处。教学中,覃老师通过演示形象生动的课件,让学生理解6只鸽子飞进5个鸽舍,至少有一个鸽舍里有2只鸽子。既成功地突破了教学的重点与难点,又激发学生学习的兴趣,并在应用规律解决问题中获得成功的情感体验。
不足之处:课堂中对学生的评价不够,这样对学生的学习积极性有所打击。
抽屉原理教案【第三篇】
教学内容:
六年级数学下册70页、71页例1、例2.
教学目标:
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
教学重点:
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
教学难点:
教学准备:
相应数量的杯子、铅笔、课件。
教学过程:
一、情景引入。
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
二、探究新知。
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1。
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(学生通过操作观察、比较不难发现有与上个问题同样结论。)。
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题。
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……。
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)。
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)。
4、总结规律。
a、先同桌摆一摆,再说一说。
b、你怎么分的?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2。
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报。
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。
三、解决问题。
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
四、课时总结。
抽屉原理教案【第四篇】
教学过程:
一、创设情景,导入新课。
师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果--不管怎么坐,总有一个座位上至少坐了2位同学。
师:为什么?(学生回答)。
师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。
师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!
二、探究新知。
(一)教学例1。
1、出示题目:把4枝铅笔放进3个文具盒里。
(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)。
2、理解“至少”
师:“至少”是什么意思?如何理解呢?
(最少2枝,也可能比2枝多)。
师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。
3、自主探究。
(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。
(2)全班交流,学生汇报。
第一种方法:
(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。
教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)。
第二种方法:
师:还有别的思考方法,来验证我们之前的猜测吗?
假设法:(学生汇报)。
师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。
4、优化方法。
那么把5枝铅笔放进4个文具盒里,会怎样呢?
那么把6枝铅笔放进5个文具盒里,会怎样呢?
那么把7枝铅笔放进6个文具盒里,会怎样呢?
那么把100枝铅笔放进99个文具盒里,会怎样呢?
(学生解释说明,师课件演示)。
师:你们为什么都用第二种方法,而不用列举法呢?
5、发现规律。
师:通过刚才我们分析的这些现象,你发现了什么?
(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)。
6、出示做一做:7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里?
(1)学生独立思考,可以自己想办法解决。
(2)全班汇报,解释说明。
(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)。
(二)教学例2。
1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?
2、学生利用学具探究。
3、学生汇报,教师课件演示。
如果把我们的这种思维方法用式子表示出来,该怎样列式?
5÷2=2…..1(3)。
4、拓展:把7本书放进2个抽屉里呢?
把9本书放进2个抽屉里呢?用式子怎么表示?
7÷2=3….1(4)。
9÷2=4…1(5)。
师:同学们观察这些板书,你发现了什么规律吗?
(商+余数)(商+1)。
5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?
学生独立思考,汇报交流。板书式子:8÷3=2…2(2+1=3)。
教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.
(三)结论。
师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理”
课件出示。
三、拓展应用。
“抽屉原理”在现实生活中引用也是非常广泛的。下面,老师再带大家做一个小游戏。扑克牌游戏。
抽屉原理教案【第五篇】
我听了覃老师的《抽屉原理》一节课后,受益匪浅,本节课覃老师着眼于学生的发展,凸显数学学习的生活化;注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学,引导学生观察比较。同时,还注意学生获取知识的思维过程,体现教师的引导下学生的主动探究过程。
这一堂课中有以下几个亮点,是值得我学习的地方:
1.在新课的学习中,覃老师着力调动学生的学习积极性,让全体同学都主动参与到学习中,并给予学生上台操作演示的机会。在整个课堂教学中,覃老师并没有完整地小结公式之类的规律,更多的是引导学生学会学习,懂得思考问题的方式方法,从“无序”走向“有序”,激发了学生学习数学的参与热情,真正促进了学生思维的发展。
2.努力培养学生的数学情感,让学生学习生活中的数学,做到让数学生活化,使学生从生活开始、在生活中学、到生活中用。同时又不乏情趣调动学生学习积极性和主动性,以此培养学习数学的兴趣。
根据学生生活经验,教学中选取了学生熟知的身边的实例活动,密切了数学与学生现实生活的联系,调动了学生原有的生活经验,使学生觉得数学就在自己的'身边。这样就激发了学生探究问题的强烈欲望,激活了学生的思维,发挥了学生的主动性。引导学生把所学知识运用到日常生活中,并延伸到课堂外,让学生继续探寻知识,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。
根据教学设计多媒体课件应用恰当好处。教学中,覃老师通过演示形象生动的课件,让学生理解6只鸽子飞进5个鸽舍,至少有一个鸽舍里有2只鸽子。既成功地突破了教学的重点与难点,又激发学生学习的兴趣,并在应用规律解决问题中获得成功的情感体验。
不足之处:课堂中对学生的评价不够,这样对学生的学习积极性有所打击。
文档为doc格式。
。
抽屉原理教案【第六篇】
各位领导、老师:
大家好!
首先非常感谢两位执教的老师,给我们带来了两节非常精彩的教学观摩课。听了这两节课,我受益匪浅。接下来,我想对廖老师执教的“抽屉原理”这一节课,谈谈自己几点初浅的体会和一点不成熟的看法。
我认为本节课较好地体现了以下几点:
一、教者善于找准教材切入点,从学生熟悉的“抢凳子”游戏引入,让学生初步体验不管怎么坐,总有一张椅子上至少坐着两个人。激发了学生的探究兴趣,教师开门见山地揭示出课题,又较快的抓住了学生的注意力,使学生产生“疑而不惑,又欲解之”的强烈愿望,这是进入本节课学习的良好开端。
二、教者注重让学生在操作中,经历探究过程,感知理解抽屉原理。本节课中教师组织的教学活动结构紧凑,实施过程层层推进,在学生一次次的操作、观察、猜测、总结、归纳中一步步地探寻规律,建立数学模型。整堂课,教师不是直接将公式抛给学生,让学生套用公式解决问题,而是让学生经历了数学学习过程,上得扎实有效。
三、教者能注重学生“说课”过程,能充分的让学生来说,提高了学生有条理地、清晰地阐述数学观点的能力,也使学生感受到了数学语言的逻辑性与严密性,感受了数学的魅力。
四、能深入挖掘教材,拓宽了知识应用的深度和广度,如巩固练习部分“扑克牌”、“生日”那两题的设计。
最后,提一点不成熟的看法。在得出结论“商+1”时,是否再简要地强调说明一下为什么是“商+1”,而不是“商加余数”,那将会让学生更清楚探讨的问题是“至少数”,因此,当有余数时,应再将余数一一分配。
抽屉原理教案【第七篇】
我的几点看法:
最近我一直正在关注抽屉原理,刚好听了高玉东老师的这节课,我来谈一下我的几点看法。
一:我认为高老师的课三言两语直入主题,节省了时间,这是构建高效课堂的基础。有的老师讲课导入部分太长,浪费了时间,我们应该借鉴一下,缩短我们导入新课的时间。
二:过程清晰。高老师吃透了教材,把教学过程呢设计的由易到难,层层递进,是学生易于接受。这凸显了高老师把握教材的能力,使我感受很深,也是我今后努力的'方向。
三:我讲一下我的几点看法。我研究了抽屉原则的几个主要方面。
1.我认为在教学的过程中应结合具体的例题讲一下什么是至少,让学生先理解了至少的含义在具体的教学。抽屉原则这类的题我考过其他的成年人,他们刚读题时不理解至少的含义,所以做错了,我认为学生也不好理解,所以讲一下至少的含义再继续往下教学。
抽屉原理教案【第八篇】
本课是小学六年级数学广角的内容。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于利用学生已有的认知,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下可取之处:
兴趣是最好的老师。课前“抽扑克牌”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。比如:任意点13个同学起来,至少有2个同学在同一天过生日。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,特别是在学生叙述的过程中,学生用比较凌乱的语言的进行描述,教师指导不够,因为数学语言精简性直接影响着学生对新知识的理解与掌握,也就是没有很好地强化理解“总有”“至少”的含义。
上一篇:想别人没想到的感悟精编