三角形的认识知识点精彩4篇

网友 分享 时间:

【导言】此例“三角形的认识知识点精彩4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

小学数学三角形的知识点【第一篇】

1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。

3、三角形具有稳定性。

4、三角形任意两边之和大于第三边。

5、三个角都是锐角的三角形叫做锐角三角形。

6、有一个角是直角的三角形叫做直角三角形。

7、有一个角是钝角的三角形叫做钝角三角形。

8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

9、两条边相等的三角形叫做等腰三角形。

10、小学四年级数学四则运算及三角形知识点:三条边都相等的三角形叫等边三角形,也叫正三角形。

11、等边三角形是特殊的等腰三角形

12、三角形的内角和是180°。

13、四边形的内角和是360°

14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

角形知识点总结归纳【第二篇】

一、轴对称图形

1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

3、轴对称图形和轴对称的区别与联系

4、轴对称的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2、线段垂直平分线上的点与这条线段的两个端点的距离相等

3、与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数、关于y轴对称的点横坐标互为相反数,纵坐标相等、

2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等腰三角形)知识点回顾

1、等腰三角形的性质

①、等腰三角形的两个底角相等。(等边对等角)

②、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

2、等腰三角形的判定:

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边三角形)知识点回顾

1、等边三角形的性质:

等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则

④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

2、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

小学数学三角形的知识点【第三篇】

一、三角形的有关概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:

①不在同一直线上;

②三条线段;

③首尾顺次相接;

④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高

(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;

②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、三角形的边和角

三边关系:三角形中任意两边之和大于第三边。

由三边关系可以推出:三角形任意两边之差小于第三边。

三、三角形内、外角的关系

1.三角形的内角和等于180°。

2.直角三角形的两个锐角互余。

3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

4.三角形的外角和为360°。

四、等腰三角形与直角三角形:

1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

说明:等边三角形是等腰三角形的特殊情况。

2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

小学数学三角形的知识点【第四篇】

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S= [p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

数学高一知识点已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

已知三角形三边a、b、c,则S= {1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (三斜求积 南宋秦九韶)

| a b 1 |

S△=1/2 * | c d 1 |

| e f 1 |

| a b 1 |

| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC

| e f 1 |

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!

48 165978
");