人工智能的论文题目【精选12篇】

网友 分享 时间:

探讨人工智能在各行业应用中的挑战与机遇,分析其对社会经济发展的深远影响与未来趋势。下面是可爱的小编为大家收集整理的人工智能的论文题目优秀范文,欢迎阅读参考,希望对您有所帮助。

人工智能的论文题目

人工智能的论文题目 篇1

1950年,艾伦,麦席森,图灵发表了1篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。

人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。

(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。

(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。

(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。

(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。

人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。

一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的cfo应随时可以接任ceo。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。

另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。

参考文献:

[1]闰钰.企业人工智能时代下对会计行业的思考[j].商场现代化.2018(1z)。

[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[j].现代商业.2018(18)。

[3]李牧阳,运用给会计行业带来的问题和思考[j],中国管理信息化.2019(42)。

人工智能的论文题目 篇2

以前我们谈科技进步,谈网络应用,总说是一把双刃剑,有利有弊。现在,面对日益发达的人工智能,我想说:现在,摆在我们面前的任务是把它变成一把单刃的剑。

把人工智能变成一把双刃剑,需要我们以正确的态度去面对。就像一局险胜阿尔法狗的李世石一样,他说:人机大战并没有让我感受到失败的痛苦,反而让我更好地理解了象棋,这让我很开心。连续输三局的天才棋手柯洁说:阿尔法狗让我更好地理解围棋的奥秘。面对人工智能的快速发展,我们应该有更积极的态度和更清晰的认识。不能一味的夸。人工智能有多优秀,多无敌,不能一味贬低人类来看人类。我们需要知道的是,阿尔法狗只是一台机器,是人类创造的玩具。他没有头脑,没有情感,甚至没有——的智商。只是我们在研发过程中输入的一堆冷冰冰的代码,不需要自大,也不需要妄自菲薄。我们和人工智能是平等的,有时候它们可以成为我们的工具。

要把人工智能变成一把单刃剑,我们需要了解它。俗话说知己知彼百战不殆。网上有人说,如果人工智能获得了人类的意识,那么他们就会反过来奴役人类。未来将是人工智能的世界,让人恐慌。首先,人类还没有能够让一台机器拥有意识,很多人还没有意识到意识的起源。做出这种无用的猜测,没有实际意义。现在我们能做的就是找出它的运行规律,了解它的优缺点。掌握使用人工智能的方法。带上她神秘的面纱,而不是看着他的面纱漫天要价。

要把人工智能变成一把单刃剑,最重要的是扬长避短。是的,任何事情都有两面性。就像之前关于学生是否应该使用手机的争论一样,在自律性差的人手里,手机是用不好的,而在头脑清醒、自律性强的人手里,才能充分发挥自己的优势。而且不会让劣势影响自己,人工智能也是一样。现在要注意的是提高自己应用人工智能的能力。让这些过于智能的机器在我们手里得到合理的利用,让它们的缺点得到融化,优势得到彰显。只有这样,人工智能才能得到它的天赋,并充分利用它们。

问:如何让人工智能成为一把双刃剑?回答:以正确的态度面对他,以积极的方式认识他,然后扬长避短,是运用人工智能的好方法。

人工智能的论文题目 篇3

在二十一世纪的将来,宁波市室验小学的中心,有一座巨大的建筑物――大本钟。

这不是大本钟的仿照,而是一座高科技的智能教学楼。这座楼分成一个个小小的圆,那是一个个教室。现在,可以让你见识见识所谓的“高科技”啦。走上楼梯,来到四(五)班的教室门口,门口摆着好多双鞋,不用惊奇,教室是圆的,固然得穿特别的鞋啦。在门框上,有一个指甲大小的洞,那是微形录像头,假如你晚到了便会自动发信息给教师,以防你不诚恳,偷偷溜进来。教室的中心有一大个一大个的沙包,那是学生座椅,你任凭怎么坐都可以,由于它有一个芯片,可以测你的心理,只要在听课就可以。假如没听课,它就会像一把扎满钉子的“活火山”,把你弄得苦痛不堪。教室里没有桌子,一人一个平板电脑,教师讲课的板书占一半,不用怕看不见,在为可以放大。另一半是录像机,把教师讲的课全程录像。

教室前面的讲台更牛,还有那个“大本钟”语。数教师(包括全部教师)要拖课,那把教室建成大本钟干吗?钟一响,学生倒安平稳稳的,教师在讲台上却被震得象在12级地震现场,五脏六腑都“蹦”了出来。假如学生很喜爱,只要在“课后评分”地方点一个好,教师就会留下来。“墙”上的黑板也有芯片,教师不用找文件,心里一想,文件就会立即翻开。芯片还能识别人。同学假如在动,不到5秒,电脑就会自动关机,以防坏掉。黑板角落一个个白色的,上面画有图案的是教室按扭,一按,相应的教室布置,让同学们和教师不会为没有教室而苦恼。

教室后边的图书角也很奇妙。想到什么书,什么书就会被推出一个角,不用我们一本本地找了。图书角的边上有一个生物角,透亮的玻璃里一个“动物园”一样的地方。每天都会引来很多奇怪的眼睛,里面除了凶狠的野兽,其它动物几乎都不缺。进入边上的“更衣室”,一套适合你的衣服就穿在了你身上,再走进“迷你动物园”,边上不是透亮的了,而是一望无际的“动物天堂”。尽管知道这是幻觉,但学是很吸引人。走近那些动物,衣服起了作用,让人听懂了它们的语言,还能和它们沟通呢!

不止这些呢,节日里,“天花板”上的灯会身出五彩的`光线,平常只会在摔倒时变软的“地板”现在一不当心踩着了哪块,“砰”地一下就会炸出五色的彩带,立即又自动恢复,为节日增加不少乐趣。

噢,差点遗忘了,教室是园的,真正的目的就是不让教师体罚学生。由于那把“沙包椅”已经起到这个作用了啦!

这样一个智能教室,肯定会在21世纪被创造出来让我们用的。我们肯定要去研发出这种高科技的智能教室。

人工智能的论文题目 篇4

在科学技术日新月异的今天,知识呈爆炸性增长,全世界每天发表的论文都有数以万计,关键词能鲜明而直观地表述文献论述或表达的主题,使读者在未看学术论文的文摘和正文之前便能一目了然地知道论文论述的主题,从而作出是否要花费时间阅读正文的判断[1]。不仅如此,关键词揭示的是学术论文最核心的内容,是文章最基本的学术思想、技术方法的提炼和概括[2],因此学术界已约定利用主题概念词去检索最新发表的论文。可见,关键词早已成为学术论文的文献检索标识,它并不是可有可无的论文装饰品,更不是“形式主义”和“八股文”。关键词标引得是否恰当,关系到该文被检索的概率和该成果的利用率。

二、关键词标引的原则。

(一)专指性规则。

一个词只能表达一个主题概念,即为专指性。只要能在叙词表中找到与该文主题概念直接对应的专指性叙词,就不允许用词表中的上位词(s项)或下位词(f项);若找不到与主题概念直接对应的叙词,而上位词确实与主题概念相符,即可选用。限制不加组配的泛指词的使用,以免出现概念含糊。

(二)组配规则。

1。交叉组配。系指2个或2个以上具有概念交叉关系的叙词所进行的组配,其结果表达一个专指概念。例如:“喷气式垂直起落飞机”,可用“喷气式飞机”和“垂直起落飞机”这两个泛指概念的词确切地表达叙词表中没有的专指概念。

2。方面组配。系指一个表示事物的叙词和另一个表示事物某个属性或某个方面的叙词所进行的组配,其结果表达一个专指概念。例如:“信号模拟稳定器”可用“信号模拟器”与“稳定器”组配,即用事物及其性质来表达专指概念。

在组配标引时,优先考虑交叉组配,然后考虑方面组配;参与组配的叙词必须是与文献主题关系最密切、最临近的叙词,以避免越级组配;组配结果要求所表达的概念清楚、确切,只能表达一个单一的概念;如果无法用组配方法表达主题概念时,可选用最直接的上位词或相关叙词标引。

(三)采用自由词标引。

关键词允许采用自由词标引,下列几种情况可采用自由词标引:

1。主题词表中明显漏选的制图概念词;。

2。表达新学科、新理论、新技术、新材料等新出现的概念;。

3。词表中未收录的地区、人物、文献、产品等名称及重要数据名称;。

4。某些概念采用组配,其结果出现多义时,被标引概念也可用自由词标引。

自由词尽可能选自其他词表或较权威的参考书和工具书,选用的自由词必须达到词形简练、概念明确、实用性强。采用自由词标引后,应有记录,并及时向叙词表管理部门反映。

(四)标引程序。

首先对文献进行主题分析,弄清该文的主题概念和中心内容;尽可能从题名、摘要、层次标题和正文的重要段落中抽出与主题概念一致的词和词组;对所选出的词进行排序,对照叙述词表中找出哪些词可以直接作为叙词标引,哪些词可以通过规范词化变为叙词,哪些叙词可以组配成专指主题概念词的词组;还有相当数量无法规范为叙词的词,只要是表达主题概念所必需的,都可以作为自由词标引并列入关键词。

三、关键词标引常出现的问题。

(一)用词不规范。

关键词虽然不像主题词那么严谨规范,但绝不能随意选取。因为关键词标引的正确与否直接影响到计算机检索工作,所以无检索意义的词语不能作关键词。一般规定关键词必须是实词,即必须是一些具有实质意义的词语。用词不规范主要表现在有些选用的词语不是实词,或不能揭示主题内容。

例5:网络经济时代图书馆信息服务的创新/傅先华//现代图书情报技术。20xx。3。

关键词:网络经济;图书馆;信息服务;创新;策略。

此论文中的关键词“图书馆”,用词太宽泛,作为关键词输入电脑检索,会跳出大量有关“图书馆”方面的文献,使其在提示该论文主题内容的专指性方面的作用大大降低,失去该关键词应起的作用。

例6:电子商务在数字图书馆中的应用/谢春枝//现代图书情报技术。20xx。2。

关键词:电子商务;数字图书馆;应用。

该论文中的关键词“应用”没有检索意义,不能作关键词。

(二)关键词的外延过于宽泛。

关键词是学术论文的文献检索标识,是表达文献主题概念的自然语言词汇。它是从论文的题名、摘要、层次标题和正文中选出来的,能反映论文主题概念的词或词组。因此,应从题名、摘要、层次标题和正文中选取最恰当、最能反映论文所属学科的专用的、义项比较单一的词作为关键词,切忌选用概念外延过于宽泛的词。

例3:1篇题名为《论高校自然科学学报发展的新理念》的论文[3],把“新理念”选作关键词就不妥当。因为“新理念”的外延太大,任何一门学科都存在新理念,从正文的3个层次标题中选取“科技理论”、“人文理论”、“编辑理论”作为关键词要恰当得多。

(三)关键词漏标。

例6:1篇题名为《话说退稿》的论文[4]的关键词为:“稿件;期刊;作者;编辑”。这篇论文就明显地漏标了“退稿”这个关键词,而没有这个关键词,全文就主题不明。

例7:1篇题名为《文化传播与外语教学》的论文[5],关键词是:“语言;文化;目的语文化”,显然也漏标了“外语教学”这个关键词。由上可见,关键词漏标现象在许多学术期刊中也是屡见不鲜的毛病。

(四)英文关键词不规范。

中、英文关键词不一一对应,有的中文关键词为6个,英文关键词则为5个,或中、英文关键词的顺序不一致。英文关键词拼写错误多,有的用词不正规,不是专用名词术语,而是由普通英文名词罗列而成。

随着计算机硬件设备的改进和软件技术的提高,以关键词做主题索引而设计和建立的计算机数据库检索系统越来越多。关键词作为一种便于文献信息在计算机中进行文献标引的最佳形式,具有较高的标引效率,特别适合于网上繁杂、无序的海量文献信息处理,因而成为当前互联网主要的检索语言,为国内外各种学术期刊和文献检索工具普遍采用,并得到迅速发展,这足以说明其对揭示论文主题和检索科研成果的重要作用。因此,必须加强对学术论文中关键词的规范化建设,重视对学术论文关键词的学习与研究。

人工智能的论文题目 篇5

随着数字智能技术的不断进步,人工智能技术在电气自动化控制系统中的应用也日益广泛。因此,在电气自动化控制系统中,为提高生产力水平、方便人们日常生活,需要加大对人工智能技术的应用研究,实现自动化体系的升级和发展需要。本文主要以人工智能技术的应用理论和现状入手,具体介绍了电气自动化控制中人工智能技术的应用对策,最终提高经济效益和社会效益。

电气自动化是一门实践性较强的应用性科学,主要研究电气系统的运行控制和研发。人类社会文明发展至今在科学技术方面的最大进步,主要是实现了系统中机械设备运行和控制的自动化和智能化。研究人工智能技术在电气自动化控制中的应用,有助于推动电气系统自动化的进一步发展,实现系统运行的智能化,使得其更加安全稳定,最终提高企业的生产效率,提高市场竞争力。

人工智能是一门新型的计算机科学,介于自然科学和社会科学边缘之间,研究对象主要是智能搜索、逻辑程序设计、自然语言问题和感知问题等。人工智能技术的本质就是模拟人类思维进行信息编码的过程,主要是结构模仿和功能模拟两种思维模拟方式。前者模拟形式主要是对人类大脑机制进行模拟,制造出类似人脑的机器设备;后者模拟主要是从人脑的功能角度出发,对人类大脑思维功能进行模拟。较为成功的典型事件就是现代的电子信息计算机,顺利地模拟人类大脑思维进行信息编码。

人工智能不是人的智能,更不是对人的智力功能的超越,其不同于人类大脑运行的显著特征主要有四个方面:是机械的无意识的物理过程;无社会性;不具备人类意识的创造力;功能是在人类大脑思维之后产生的。应用人工智能技术在电气自动化控制系统中,可以极大地节省人力资源,降低成本。同时,不控制目标模型就可以提高操作的准确度,降低误差。此外,这样还能保证产品的规范,提高性能。

近年来,人工智能技术得到了公众的高度重视,大多数的专业性高校和科研单位都对其在电气自动化系统中的应用开展了众多工作,现下的人工智能技术主要应用在电气设备的设计、事故及故障诊断和电气控制过程中的监控预警等工作。首先,在电气自动化系统中电气设备的设计方面,设备的结构设计较为繁琐复杂,涉及面较广,要求操作设计人员具备较多的实践经验。其次,在事故及故障诊断方面,人工智能技术可以利用模糊逻辑和神经网络等发挥优势,做好预警监控工作。最后,在电气控制过程中应用人工智能技术,主要依靠神经网络、模糊控制和专家系统三种方式,其中模糊控制应用较为普遍,以ai控制为主。

根据上部分分析的人工智能技术在电气自动化控制系统的应用现状,可知为实现电气自动化控制系统运行的高效性、提高人工智能技术的应用性,对策主要有以下三个方面:应用于电气设备设计、应用于事故及故障诊断和应用于电气控制过程。

应用于电气设备设计。

根据诸多电气工程的实践证明,只有具备各相关专业的学科知识和技艺才能真正实现电气自动化控制系统的高效性,使其稳定运行。在电气设备的设计中应用人工智能技术,可以简化工作,降低人力成本。因此,企业拥有一批素质高的设计团队,这是电气自动化控制系统实现高效性的关键之一。此外,企业需要采取先进的人工智能技术进行电气设备的设计工作,尤其是结构设计工作。具体来说,人工智能技术在进行电气设备设计时主要是采用遗传算法升级计算机系统,全面提高产品的研发、设计和生产,优化设计产品。

应用于事故及故障诊断。

电气故障诊断,指的是对电气自动化控制系统中机械设备的先关信息进行确定,判断技术和运行状况是否正常,如果出现异常,可以及时确定故障的具体内容和性质部位,找出故障原因并提出解决对策。而在电气设备运行时,不确定因素较多,使得系统容易出现各种类型的故障和事故,如果无法及时确定故障的性质和部位,将会给员工的人身安全带来威胁,企业也会承受较大的经济损失。因此,及时判断分析事故并做好故障诊断工作,是一项至关重要的工作。可以在传统的电气控制系统中,采取一些新型的.人工智能技术进行诊断。比如说,在诊断变压器的故障中,我们可以引入人工智能技术进行诊断,在节省人力物力的同时保证诊断的精确性,也可以在对发动机和发电机等电气机械设备进行事故诊断时引入人工智能技术,提高精确度,以达到良好的工作效果,实现企业的经济效益。

应用于电气控制过程。

人工智能技术在电气自动化控制系统中起着关键性作用,是电气行业中的重要部分。实现电气自动化控制的人工智能化,有助于降低工作成本,提高工作效率,实现资源优化和最佳配置。在传统的电气自动化控制过程中,由于过程的繁琐复杂操作人员容易出现错误,而采取人工智能化技术则可以避免这些人为错误。人工智能技术主要采取神经系统的控制、专家系统的高效控制和模糊控制。现在最常用的技术方式是模糊控制,通过模糊控制借助直流电和交流电的传动最终实现电气自动化控制系统的智能化控制。模糊控制可以具体分为surgeno和mamdan两种表现形式,前者是后者的特殊情况,两者均用来调速控制。

在电气领域里,人工智能技术可以运用到日常操作中。我们可以利用家庭电脑实现对电气自动化控制系统的远程操作控制。具体来说,是通过采用人工智能技术预先设计好的既定程序控制操作过程,实现设备智能化,及时掌控全局。

综上所述,电气自动化控制中的人工智能技术的应用研究,既能实现工作效率的提高,还能降低运行成本,更好地实现电气系统的自动化智能化控制。此外,随着科学技术的飞速发展,人工智能技术在电气自动化控制中的应用面临着巨大的机遇和挑战,需要学者们不断研究和完善,使其得到更好的应用。

人工智能的论文题目 篇6

随着科学技术的不断发展,人工智能被广泛的应用于各个行业,计算机领域就是其中之一。目前,计算机的功能已经从数值计算发展到问题的求解和知识处理等方面,计算机功能的转变依靠的核心技术就是人工智能。本文对人工智能的基本概念进行了介绍,并分析了人工智能在计算机网络技术中的应用。

人工智能技术是通过运用语言学、生理学和心理学等多种学科来模仿人类智能的技术,其最终目的是超越人类智能。在人工智能技术中,通过多种学科技术的应用,可以使机器模拟人的视听说以及思维,从而使机器具有人的思维方式和能力。利用人工智能可以帮助人们解决工作和生活中遇到的问题,使人们的工作效率得到大幅度的提高。人工智能技术的发展和计算机技术是密不可分的,二者是相辅相成的关系。人工智能技术在计算机网络技术中的应用可以大幅度的提升计算机的功能。通过人工智能技术可以提升计算机处理信息的能力,更加准确的掌握系统资源,并且对系统资源的变化做出迅速的反应,从而更好的处理信息和进行信息的防护。同时,人工智能技术在资源整合方面也具有巨大的优势,能够更好的实现用户之间的信息共享。人工智能还能够提高网络管理的效率,其具有的`学习能力和推理能力使其在网络护理中具有重要的作用。通过利用人工智能技术可以使计算机处理信息的准确性和效率得到提升,与此同时还能够利用人工智能的记忆功能提升计算机的信息存储能力和效率。综上所述,人工智能的应用可以全面的提升计算机网络的管理水平。

人工智能在计算机网络安全管理上的应用。

人工智能在计算机网络安全管理方面具有重要的作用,利用人工智能可以使人们更加方便快捷的进行计算机网络的安全管理工作。目前,人工智能在智能防火墙、入侵检测系统以及智能反垃圾邮件等计算机网络安全管理技术方面有着重要的应用,在保护计算机网络安全方面发挥了重要的作用。智能防火墙技术相较于传统的防火墙,能够大幅度的提升安全监测的效率,更好的进行安全服务。通过智能防火墙中应用的智能识别技术可以高效的进行数据的识别和处理工作,能够迅速的发现网络中存在的风险并及时的进行处理。智能防护墙技还能够有效的抵御病毒的入侵以及其他一些计算机的安全威胁。入侵检测系统是保护计算机网络安全的一种重要方式,对保证计算机网络安全具有十分重要的作用。通过入侵检测系统,能够有效的保护计算机中的数据资源,保证数据的保密性、完整性、安全性。入侵检测系统通过进行数据的采集、筛选和分类,及时的向用户反映计算机网络的安全状态,从而使用户可以对自己计算机的安全状态有着充分的了解。目前人工智能在入侵检测系统应用主要在模糊识别、专家及人工神经网络等方面。将人工智能应用到反垃圾邮件中,能够在不影响用户使用的前提下对用户的邮件进行扫描、检测和及时的标记,使用户能够及时的处理掉存在安全风险的邮件,保护计算机的安全。

人工智能agent技术推动计算机网络信息服务水平的提高。

将人工智能应用到计算机网络系统中能够提高计算机网络信息服务水平,改善计算机的使用方式。人工智能代理(artificalintelligenceagent)技术,也就是人们常说的人工智能agent技术是一种实体软件,其主要包括知识域库、解释推理器、数据库、各个agent之间的通讯等部分,其主要功能是为用户提供人性化、个性化的服务。利用这种技术,能够帮助用户过滤、整理信息,并且快速的发现需要的信息,从而帮助用户提高效率,节约时间。除此之外,人工智能agent还能够实现信息的有效集成为知识域库,从而使信息的检索和管理变得更加简捷、便利,人工智能agent还能够实现知识的挖掘以及提供导航服务。通过人工智能agent可以帮助人们进行日程安排、网上购物以及邮件处理等工作,为人们提供更优质的服务,给人们的生活带来便利。

应用人工智能可以实现计算机网络的综合管理,通过利用人工智能中的专家知识库可以解决遇到的问题。由于计算机网络具有动态性和瞬变性,因此进行计算机网络的管理非常困难,而基于人工智能技术发展起来的专家级决策和支持方法可以有效的进行计算机网络系统的管理。通过将各领域的专家的知识经验进行总结,并将其录入到系统之中可以使领域内专家的经验汇集,在出现问题时可以通过专家的经验进行快速的解决。在计算机网络管理和评价中应用专家系统,可以提高网络管理和系统评价水平。

作者:张春柏单位:北京联合大学生物化学工程学院。

人工智能的论文题目 篇7

你听说过或者看到过智能垃圾桶吗?假如你们没看到,那就请跟我一起坐时间穿梭机到将来世界去参观吧!

将来的大街上,洁净无比,没有落叶、没有垃圾、没有处处飘舞的苍蝇、蚊虫、更没有刺鼻的汽油味......

哟!多得意的米奇老鼠啊!我们一起跑上前,正想摩挲它,嘿!原来是一个垃圾桶。这可不是一般的垃圾桶哟!你们瞧:米奇两眼还发着光呢,原来它正在发电来处理自已肚里的东西。米奇嘴巴紧闭着,头上有二根天线,这天线可不是好玩的,它左边一根天线是汲取路旁汽车的尾气的,右边一根天线是汲取太阳能的,以用来发电处理垃圾的;米奇胖乎乎的身体上还有三颗颜色不同的大纽扣。一个小朋友奇怪的触摸了一下第一颗红色的扣子,垃圾桶的门自动翻开了,又按了一下其次颗绿色扣子,门又自动的关上了,那第三颗是干什么的呢?小朋友忍不住又按了一下第三颗*的扣子,哈!真奇妙,扣子眼里弹出一个微型电话。这时,一位阿姨走过来,见我们围着米奇,知道我们想知道这只奇妙的米奇的功能,于是,便给我们介绍起来:这只米奇的脑袋里装有电脑芯片,它只要看到有人不当心掉了垃圾,它就会走过去,用手将垃圾捡起来,张开紧闭的嘴,把它扔进去。假如看到有人不爱清洁,它的`另一只手则会出示”爱惜环境荣耀,破坏环境耻辱”的小牌。它还有很多的内在功能:它会垃圾分类,把有毒和无毒的分装在肚子的两边,它肚子里还有一种溶化器,它把无毒的垃圾处理成肥料,把有毒的垃圾通过自身的排毒器将它转换成一种无毒的清爽气体,释放出来。它还有一种特别好玩的趣事,一但它肚子的垃圾装满了,它就会自动处理垃圾,并会走到一棵树下,从紧闭的嘴里弹出一根管了,然后插入土里,把垃圾养份注入树里,然后又回到它原来的位置。

到了秋天,秋风扫落叶时,米奇头上便会张开一个巨大的吸盘,把黄叶都吸进去,然后又做成肥料。米奇的脚下还有一种粘了水的毛刷式吸尘器,它可以一边唱”小曲”,一边走一边清洁道路。

假如我们现实中有这种垃圾桶,那该多便利啊!我想,这个愿望不会是梦,我们的愿望肯定会实现。

人工智能的论文题目 篇8

人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。

人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。

人工智能(ai,artificialintelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。

将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。

目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:

(一)教学条件参差不齐。

开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。

(1)对硬件性能的要求。

人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。

(2)对软件性能的要求。

为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。

(1)学生的认识误区。

提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。

(2)教师对人工智能学科开设存在偏见。

一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。

(三)一线教师经验不足。

在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。

(一)加强软、硬件建设。

在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。

(二)端正认识,增强支持。

作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。

作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。

校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。

总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。

参考文献:

[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).

[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.

[3]教育部.普通高中技术课程标准(实验稿).人民教育出版社,2003年4月.

[4]张家华,张剑平.开展高中人工智能教学存在的问题及对策[j].

人工智能的论文题目 篇9

十九世纪末到二十世纪以来科学技术得到了飞速的发展,在这个时期里很多学科都得到了提高和补充,学科间的关系也越来越密切,一系列利好因素的共同作用下,机械电子工程学得以产生并发展。

顾名思义,机械电子工程就是电子信息技术与传统的机械技术的一个结合,充分的发挥了两个不同学科在技术上的共同点,达到了物理上和信息功能上的连结。这是一个跨学科的尝试,更是一个挑战,它可以将所有的机械工程信息进行分析,达到智能化的目的。虽然依旧属于机械工程行业,但是显然已经拥有了自己的特点。

1)不同的设计方法。

机械电子工程与传统工程相比,已经不是单一的一个学科,它已经发展成为了有很多技术和科学共同组成的一个新学科,并且在工程设计上充分的吸纳了信息技术、机械技术,并为了使工程的各模块结构布局更加完整,设计人员一般都会采取自上而下的设计方法。

2)产品上的差异。

2机械电子工程的发展过程。

机械电子工程学并不是一个孤立的学科,它与很多工程和技术都有着密切的联系,是机械工程学科和电子信息工程、智能管理技术共同作用下,形成的一个新的发展体系。在信息系统不断完善的过程中,机械电子工程体系也更加完善,并日益成熟。机械电子工程学的发展历程主要是这样的几个方面:

1)机械电子工程学的开端。

机械电子工程学在刚起步的阶段,其主要的生产形式是手工生产,此时社会的生产能力很低,没有充足的劳动力资源,发展生产力变得异常艰辛。为了改变这样一个窘迫的状况,科学家进行了大量的研究和尝试,在一次次的失败中,机械工程终于得到了一定的发展。

2)机械电子工程学的高速发展阶段。

在经历了起初艰难的开始阶段以后,机械电子工程迎来了高速发展时期,随着标准件生产在同一的流水线下得以实现,这一时期的生产已经具备了一定的标准,并且极大地刺激了生产力的发展。但是这样的生产模式并不是没有缺点的,生产的过程过于标准,使产品过于单一,满足不了不同用户和社会不断变化的需要。

3)机械电子工程的成熟阶段。

经过了多年的发展,机械电子工程产业已经形成了一定的体系,并与现代化科学技术有了一定的融合,进入了现代机械电子发展阶段。归根结底,机械电子工程的发展是为了满足社会工作和生活的需要,现代社会工作节奏加快,生产也更加灵活,对机械电子工程提出了更高的要求,机械电子行业的特点是柔性制造,这也为机械电子同信息化社会的融合创造了条件。

人类社会的发展始终离不开能源、信息。在古代,生产力水平及其低下,人们对信息的获取能力也十分有限,能源和物质是维持人类生产生活的必需品。长久以来,人类往往都没有认识到信息的作用。随着人类文明的不断发展,生产力水平的不断提高人类对信息的概念逐渐了解,同时也产生了对信息的需求,信息的价值逐渐被发现。

随着电子计算机技术的逐渐应用,人类的生活发生了质的变化,人类社会至此进入了高科技的信息时代。人工智能系统作为电子技术发展的产物,在近两年出现,并且迅速的应用到了机械电子工程领域。

电子信息技术在方便快捷的同时,也存在一定的弊端,比如缺乏一定的稳定性,这使机械信息系统在输入和输出上就会变得十分混乱,并且不利于描述。以往的描述方法一般包括:建设规则库、推导数学方程、学习并生成知识。

一般的解析方法都比较精密、准确,但是应用范围十分有限,只能应用于比较简单的系统,而对比较繁琐复杂的体系,却不能够提供完整的解析式,必须依靠人工操作才能实现。随着人们对系统的要求越来越高,处理的信息变得复杂多样,信息的内容不仅包括数据的形式,也出现了数字信息和语言信息等新形式。为了适应时代形势的发展,人工智能处理方式以其复杂、不确定的特点成为了解析数学的新方法、新手段。

人工智能处理体系一般是这样进行分类的,模糊推理体系和神经网络体系。这两个系统存在着联系,也有所不同。模糊推理系统一般通过对大脑功能进行模拟,从而分析出语言的信号;而神经网络系统模拟的却是大脑的结构,通过对数字信号的处理得出参考数值。

1)模糊推理体系和神经网络体系的相同点。

我们可以说,模糊推理体系和神经网络体系都是利用网络结构,然后在某一精度上趋近一个函数。

2)模糊推理体系和神经网络体系的不同点。

(1)映射方式。

在映射方式的运用方面,模糊推理系统运用域和域之间的映射,神经网络体系则是点到点的映射。

(2)物理性质。

模糊推理体系与神经网络体系相比拥有更明确的物理性质。

(3)计算量和计算精度。

模糊推理体系没有固定的连接,计算量和计算精度都十分有限,神经网络体系则很好的克服了这一点,在输入的过程中使每个神经元相互作用,大大的提高了计算量,并且能够保证较高的输出精度。

(4)储存方式。

在储存信息的过程中,模糊推理体系采用的是比较规则的方式,神经网络体系则是利用分布式对信息进行储存。

社会作为一个不断发展变化的有机结合体,单一的处理手段是无法满足人类发展的需要的。为此,智能系统研究专家开始了对综合智能系统的开发与探索。综合智能系统是对以往人工智能体系的继承和发展,它能够融合以往两种智能体系的优点,使数学描述变得更加全面。

4结论。

机械电子工程产业发展是我国工业信息化过程的一个写照,在工程制造的过程中充分利用现代化科学技术的巨大优势,实现了生产力的提高,满足社会发展的需求,机械电子工程和人工智能和完美结合实现了不同学科之间的融合,为工业信息化的发展提供了成功经验和新思路。

人工智能的论文题目 篇10

图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。

1图像识别技术的引入。

图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。

图像识别技术原理。

其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。其实在“看到”与“感应到”的中间经历了一个迅速识别过程,这个识别的过程和搜索有些类似。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。

模式识别。

模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。

计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。但随着计算机的发展和人工智能的兴起,人类本身的模式识别已经满足不了生活的需要,于是人类就希望用计算机来代替或扩展人类的部分脑力劳动。这样计算机的模式识别就产生了。简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。

2图像识别技术的过程。

既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。

信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。

预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。

特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。

分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。

3图像识别技术的分析。

随着计算机技术的迅速发展和科技的不断进步,图像识别技术已经在众多领域中得到了应用。20xx年2月15日新浪科技发布一条新闻:“微软最近公布了1篇关于图像识别的研究论文,在一项图像识别的基准测试中,电脑系统识别能力已经超越了人类。人类在归类数据库imagenet中的图像识别错误率为%,而微软研究小组的这个深度学习系统可以达到%的错误率。”从这则新闻中我们可以看出图像识别技术在图像识别方面已经有要超越人类的图像识别能力的趋势。这也说明未来图像识别技术有更大的研究意义与潜力。而且,计算机在很多方面确实具有人类所无法超越的优势,也正是因为这样,图像识别技术才能为人类社会带来更多的应用。

神经网络的图像识别技术。

神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与bp网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。

非线性降维的图像识别技术。

计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(pca)和线性奇异分析(lda)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。例如人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。

图像识别技术的应用及前景。

计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。随着计算机技术的不断发展,图像识别技术也在不断地优化,其算法也在不断地改进。图像是人类获取和交换信息的主要来源,因此与图像相关的图像识别技术必定也是未来的研究重点。以后计算机的图像识别技术很有可能在更多的领域崭露头角,它的应用前景也是不可限量的,人类的生活也将更加离不开图像识别技术。

4总结。

图像识别技术虽然是刚兴起的技术,但其应用已是相当广泛。并且,图像识别技术也在不断地成长,随着科技的不断进步,人类对图像识别技术的认识也会更加深刻。未来图像识别技术将会更加强大,更加智能地出现在我们的生活中,为人类社会的更多领域带来重大的应用。在21世纪这个信息化的时代,我们无法想象离开了图像识别技术以后我们的生活会变成什么样。图像识别技术是人类现在以及未来生活必不可少的一项技术。

人工智能的论文题目 篇11

〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。

人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比ai与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。

人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。

“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。

毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。

毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。

图灵与冯·诺依曼的人工智能机器也受毕达哥拉斯主义数论的影响,他们运用数的和谐以及数量关系的计算尝试让“莱布尼兹之梦”在现实生活中得以实现。图灵通过基本的数学运算将数学运算符号化为运算符,并用一个无限长纸带来表述计算过程,制造出了图灵机,这就是莱布尼茨所说的“通用机”。图灵认为人脑类似通用机,图灵提出一台计算机在多大程度上可以模仿人的活动,进而提出“机器能否思维”这个哲学问题。图灵坚持通过特定算法程序,把可计算的数量关系都转化为由一台图灵机来计算。冯·诺依曼指导发明第一台基于运算器与存储器的计算机,他为图灵通用机设计出一个物理模型——edvac,edvac可以执行加、减、乘、除等数学操作。与图灵一样,冯·诺依曼把人脑与机器类比,机器通过存储器储存数据,通过数学规则设计出把思维当成数据的程序,通过简单、和谐的数字制造出能进行复杂数字处理的机器。不管是图灵的通用机还是冯·诺依曼的edvac都是为了解决“莱布尼兹之梦”,其哲学思想均根源于毕达哥拉斯的“数论”哲学思想。除了图灵与莱布尼茨,纽维尔与西蒙等符号主义人工智能先驱也认为,不管是人类智能还是机器智能都是根据确定的或者规范的规则来进行符号操作的。不但如此,基于认知模拟的强人工智能也把心理状态作为计算状态,所谓认知就是计算,这是对基于数论的计算主义教条的信仰,人类智能类似于信息处理系统。联结主义人工智能不同于符号主义人工智能,它否认智能行为来自于在形式规则下对符号进行操作的观点,“符号主义人工智能中的信息处理包括明确的应用和形式规则,但是联结主义人工智能没有这样的规则”〔4〕1366-1367。与符号主义人工智能不同,联结主义人工智能的工作原理是寻找神经网络及其间的联结机制及学习算法。虽然联结主义与符号主义人工智能有区别,但联结主义人工智能与符号主义人工智能的共同假设都是把认知看作信息处理,且信息处理都具有可计算性。可见,毕达哥拉斯的“万物皆数,数之和谐”思想为符号主义人工智能与联结主义人工智能的发展奠定了基础。

除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。

集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。

罗素的逻辑原子论从本体论角度坚持奥卡姆剃刀的最小化原则,从语言角度上坚持思维经济原则,语言表述坚持最小词汇量原则。“如无必要,勿增实体”。罗素从逻辑学角度坚持逻辑前提或者公理最小化原则,“宁可构造,勿要推论”。根据公理与推理规则建构的逻辑学公理系统影响了图灵、冯·诺依曼及其以后的人工智能专家。冯·诺依曼致力于为新机器设计逻辑方案,戈德斯坦把冯·诺依曼看成将逻辑应用于计算机的第一人,“据我所知,冯·诺依曼是一个清楚地懂得计算机本质上执行的是逻辑功能的人”〔7〕69。冯·诺依曼在edvac的报告中也提到,不但从数学的观点,而且从工程史和逻辑学家的观点来探讨大规模计算的机器。在人工智能哲学先驱德雷福斯看来,自从古希腊人发明了逻辑与几何,就把一切推理归结为计算。人工智能中符号主义的基础是逻辑学,是哲学中的理性主义、还原论传统。他们把计算机看成操作思想符号的系统,试图用计算机来表达对世界的形式表述。心灵与计算机都是物理符号系统。在德雷福斯看来,“伽利略发现人们可以忽略的品质和技术上的考虑,从而能找到一种用来描写物质运动的纯形式化系统,同样我们可以设想,一位研究人类行为的伽利略可能会把所有语义上的考虑(对意义的依赖),变成为句法(形式化)操作技巧”〔8〕76。人工智能的代表人物数理逻辑学家皮茨与生理学家麦卡洛克撰写了《神经活动中内在观念的逻辑运算》,他们的思想受到罗素与怀特海《数学原理》的启发,坚持把一切数学还原为逻辑,甚至神经网络也可以用逻辑来表达。德雷福斯认为人工智能的发展建立在四种假设之上,即生物学假设、心理学假设、本体论假设以及认识论假设。其中认识论假设指的是一切知识都可被形式化,可以被编码成数字形式;本体论假设指的是存在一组在逻辑上相互独立的事实,知识可以被编入计算机程序。纽维尔认为:“人工智能科学家把计算机看成操作符号的机器,他们认为,重要的是每一样东西都可以经编码成为符号,数字也不例外。”〔9〕196在符号主义者看来,符号是人类认识外部世界的基本单元。人工智能的逻辑学派将人的认识对象通过数学逻辑的方式抽象为符号,利用计算机的程序符号来模拟人认知世界的过程。符号主义学派主要依靠计算机的逻辑符号来模拟人的认知过程。人工智能的重量级人物纽维尔与西蒙构造了第一个真正意义的人工智能程序,称之为“逻辑专家”,可见人工智能专家受逻辑学思想影响之深,“任何表现出一般智能的系统,都可以证明是一个物理符号系统”〔10〕41。西蒙与纽维尔认为,作为一般的智能行为,物理符号系统具有的计算手段既是必要的也是充分的。纽维尔与西蒙把其理论来源追溯到分析哲学家弗雷格、罗素与怀特海,“该假设的起源要追溯到弗雷格、怀特海与罗素就形式化逻辑提出的方案:以逻辑方式获取基本的概念式数学观念,把证明和演绎观念置于可靠的根基上”〔11〕。德雷福斯认为,真正的专家解决问题是诉诸直觉与整体性,在此基础上对人工智能的认识论假设与本体论假设进行批判,但他同意专家系统必须使用某种类型的概论度量的逻辑标准,“认知模拟的先驱者们——已经继承了霍布斯推理就是计算的主张,笛卡尔的心理表述、莱布尼兹的‘普遍文字’的思想——所有知识都可以在一组初始概念中得到表示”〔11〕。正如德雷福斯所言,“人工智能就是试图找到主体(人或计算机)中的哲学本原元素和逻辑关系”〔12〕。可见,人工智能与逻辑学特别是分析哲学紧密相关,逻辑学与分析哲学是人工智能的一个重要思想来源。

古希腊先哲用简单的物质元素探索世界的本原。例如,泰勒斯把世界的本原归结为水,赫拉克利特把世界的本原归结为火,德谟克利特把世界的本原归结为原子,认为世界由不可分的原子构成。他认为,万事万物都可以还原为不可分最小微粒——原子,世界是由原子构成的。复杂的事物由简单的事物构成,万事万物都由不可分的基本粒子构成。世界由最基本的粒子构成,复杂对象由基本粒子构成,基本粒子决定了宇宙的性质。

简单性哲学原则不但用简单元素追溯世界的本原,还致力于用力学解释自然现象。不管是物理规律、化学规律、生物规律,甚至是社会规律都可以用力学解释。哥白尼的日心说体系之所以取得科学界的支持也不是因为其解释力强,而是因为其遵循了简单性原则,从而取代了托勒密繁琐的本轮-均轮模型。牛顿的力学三定律就立足于简单性原则,用力来解释所有运动。按照简单性哲学原则,人与动物都是由简单的粒子构成,人与动物没有根本区别,人与机器也没有本质区别,甚至可以说“人就是机器”。1747年,拉·梅特里发表了《人是机器》这一哲学巨著,提出“人是动物,因而也是机器,不过是更复杂的机器罢了”〔14〕69。笛卡尔把人体看作是与机械相类似,用机械的旋涡来解释天体运动问题,他认为宇宙是一架机器,机械运动是唯一的运动规律。牛顿、开普勒、伽利略等都力图建立严密的力学体系来正确描述宏观物理运动,甚至是天体运动。爱因斯坦试图用公理化方法把自然界描绘成物质在时空中运动的统一体,德国物理学家海森堡也认为简单性原则可以作为科学假说可接受性的标准。

不仅自然界的规律可以用力学表示,而且社会关系也可以用力学表示。孔德提出社会动力学和社会静力学概念,社会动力学又称为社会物理学,立足于运用力学规律分析社会关系。1950年,斯宾塞出版《社会静力学》,把事物的基本规律看作“力的恒久性规律”(thelawofpersistenceofforce)。“人是机器”的观点启发人工智能先驱开始了构造具有人类智能机器的探索。

主体与客体的关系在哲学史上占居重要地位,是哲学研究中的核心問题,也是哲学史上诸多学派的思想源头。古希腊米利都学派的泰勒斯探索万物本源的时候就开始关注主体如何认识客体,关注主体与客体的关系,普罗泰戈拉提出的命题“人是万物的尺度”包括了主客二分思维的萌芽,笛卡尔的精神和物质相互独立的二元论思想暗含着主体和客体截然二分的思想。人们一般认为,只有人类才能成为主体,人之外的世界是客体。那主客二分的标准是什么呢?人之所以为主体的标准又是什么呢?有的学者认为只有主体才具有意向性,客体不具有意向性,客体只是主体认识的对象。主体一般具有独立意识或者个体经验。哲学意义的认识论指的是个体对知识和知识获得所持有的信念,主要包括知识结构、知识本质、知识来源和知识判断的信念等内容,主体与客体的关系问题是哲学的核心问题。认识论中的可知论与不可知论是研究主体之外的客体是否可知,唯心主义与唯物主义的区分以及各种不同的哲学流派的分野都基于主体与客体截然二分的哲学基础,哲学史上,各大流派都曾经把主客关系作为研究的切入点。

人工智能是赋予机器智能,让机器可以模拟或者代替人类的某种智能。人工智能基于不同的哲学理念有不同的研究进路,人工智能发展史上不同思想的对立也是基于对于主体与客体关系的哲学思考。一般来讲,人工智能可分为三种进路,即符号主义进路、联结主义进路以及行为主义进路。人工智能符号主义进路把人类的认知过程看成符号计算过程,人类认知是物理符号系统,人工智能先驱德雷福斯(s)认为,人工智能研究者其实与炼金术师一样,也是对一些符号进行不同的处理。因此,在人工智能的符号主义看来,人与机器没有本质区别,人类的心智同样可以还原成符号计算。德雷福斯在《计算机不能做什么:人工智能的极限》中提出,人工智能机器是基于生物学假设、心理学假设、认识论假设以及本体论假设基础之上的。“生物学假设:在某一运算水平上,大脑与计算机一样,以离散的运算方式加工信息;心理学假设:大脑被看作一种按照形式规则加工信息单位的装置;认识论假设:一切知识都可被形式化,可以被编码成数字形式;本体论假设:存在是一组在逻辑上相互独立的事实,知识可以被编入计算机程序”〔17〕156。从德雷福斯关于人工智能的四个假设中我们可以看出,人工智能与人类一样都是对信息加工和处理的工具,从这个意义上讲,主体与客体之间没有本质的区别。主体与客体不能截然二分,之所以对主体和客体进行区分,表明人类对于自身的认知规律和智能结构没有真正揭示。

人工智能的联结主义进路,又称为仿生学派或生理学派,认为人工智能源于仿生学,特别是对人脑模型的研究,其主要原理为神经网络及神经网络间的连接机制与学习算法。联结主义起初是用软件模拟神经网络,后来发展到用硬件模拟神经网络。其理论假设是人与机器如果具有同样的结构应该具有同样的功能,可以通过研究人脑的物理结构从而制造出类似人脑的机器。在联结主义看来,人与机器结构相同,人脑与计算机程序运行模式相同,则功能相同。纽维尔(allennewell)认为,智能的计算机程序可以被用来模拟人类的思维过程。联结主义失败的原因是人脑的结构并不像人工智能研究者们在电脑上模拟一样,人类的大脑是将物理事实与知觉过程所连接的客观事实,而不只是对信息进行加工的一台机器。人与机器不同,机器不具有人类的精神状态和意识。人类的精神状态和意识是否由人脑结构决定呢?人类精神状态和意识是先验存在还是后天习得仍然是认知科学研究的难题。因此,通过神经网络让机器模拟人类智能行不通。通过对人工智能的符号主义和联结主义的分析我们发现,主体与客体区别的必要性得以彰显,人的主体性地位不能动摇。

人工智能的行为主义进路,又称为人工智能的进化主义或控制论学派,其原理为维纳和麦克洛克等学者的控制论思想及感知-动作型控制系统。研究重点是模拟人在控制过程中的智能行为和作用,如对自适应、自组织和自学习等的研究。人工智能行为主义学派的代表布鲁克斯(rodneybrooks)研制的“六足机器人”实质上是一个基于感知-动作模式模拟昆虫行为的控制系统,能够适应外界的环境,但这样的机器人也不具有人类的感知与认知能力,主体与客体之间还是可以严格区分。人工智能的目标从技术层面来讲是制造出对人类有益的智能机器,从哲学层面来讲,就是利用人工智能概念和模型,通过机器模拟人类智能来推动哲学核心思想主客二分问题的研究,借此解决哲学上的身心问题、意识难题等问题。哲学的核心问题与人工智能的研究是相互促进的。

综上所述,人工智能技术的发展有其哲学根源,根源于数是万物本源思想、万物皆数思想以及数的简单、和谐思想,还根源于亚里士多德的逻辑思想以及分析哲学的逻辑分析研究方法。在众多哲学思想中,简单性原则是人工智能的哲学思想源泉。人工智能就是计算机用逻辑方法把思维还原为简单数字来模拟人脑的过程。人工智能发展是思维的革命,人工智能涉及信息与计算的本体地位和方法论问题,人工智能的发展迫使哲学家们对思维的存在形式进行深入研究,从而把形而上的论证变成可操作的过程。人工智能的目标是通过计算机实现机器模仿人类智能,人工智能的发展直接指向哲学的中心问题。例如,意向性问题、形式化问题、身心问题等。对于人工智能的哲学基础溯源有利于推动哲学的进步与发展,也可以拓展对于传统哲学问题的研究。只有对人工智能的哲学思想基础进行追溯与探源,才能为人工智能工作者提供思想源泉,从而更好地理解与把握人工智能的理论基础、发现人工智能的发展规律以及预测人工智能的发展趋势、把握人工智能的发展方向。

参考文献:

〔1〕玛格丽特·博登.人工智能哲学〔m〕.刘西瑞,王汉琦,译.上海:上海译文出版社,2001.

〔2〕汪子嵩,等.希腊哲学史〔m〕.北京:人民出版社,2004.

〔3〕亚里士多德.形而上学〔m〕.李真,译.上海:上海人民出版社,1995.〔4〕安东尼·梅耶斯.爱思唯尔科学哲学手册〔m〕.张培富,等译.北京:北京師范大学出版社,2015.

〔5〕〔m〕.northholland,amsterdam:macmillanmagazinesltd,1992.

〔6〕davis,soflogic:mathematiciansandtheoriginofthecomputer〔m〕.newyork:&,2001.

人工智能的论文题目 篇12

1、构思要围绕主题展开:若要使论文写得条理清晰、脉络分明,必须要使全文有一条贯穿线,这就是论文的主题。主题是1篇学术论文的精髓,它是体现作者的学术观点学术见解的。

2、构思论文布局,要力求结构完整统一:在对1篇论文构思时,有时按时间顺序编写,有时按地域位置(空间)顺序编写,但更多的还是按逻辑关系编写,即要求符合客观事物的内在联系和规律,符合科学研究和认识事物的逻辑。但不管属于何种情形,都应保持合乎情理、连贯完整。

3、要作读者分析:撰写并发表任何1篇科技文章,其最终目的是让别人读的,因此,构思时要求做“心中装着读者”,多作读者分析。有了清晰的读者对象,才能有效地展开构思,也才能顺利地确定立意、选材以及表达的角度。

提高构思能力。

1、写学术论文之前,先拟定提纲,可以极大地帮助作者锻炼思想,提高构思能力。

2、写作提纲,可以帮助作者勾划出全篇论文的框架,体现自己经过对材料的消化与进行逻辑思维后形成的初步设想,可计划先写什么、后写什么,前后如何表述一致,重点又放在哪里,哪里需要进行一些注释或解说。按此计划写作,可使论文层次清晰,前后照应,内容连贯,表达严密。

3、拟制写作提纲,只需要运用一些简单的句子甚至是词与词组加以提示,把材料单元与相应的论点有机组织编成顺序号,工作量并不大,也容易办到。提纲中用以提示写作的句子,有时即可用来做论文段落的标题。

讨论部分的写作技巧。

1.描述结论:首先,从专业角度对自己的研究进行总结,此部分务必与研究结果和研究目的保持一致,也就是说讨论部分的内容必须在结果中找到依据。否则就会给人一种课题设计不完善的感觉。

2.解释结论:对本研究的结论进行解释,为了突出解释的科学性和可靠性,一般是在和别人的研究分析对比中进行解释。列出几篇和自己结论一致的文献,同时也要列出几篇和自己不一致或者相悖的文献,但要解释出不一致的理由,比如是因为所选群体不一致,研究条件不一致等等,因为科学研究中的可控变量较多,所以解释两个结论不一致一般不难。

3.研究价值:结论解释完之后,还要说明本研究的应用价值,也就本研究所能给社会或者临床带来什么实际价值,比如本研究可以进一步明确某种方法治疗某种疾病的效果,本研究发现某种药物存在一些尚未发现的治疗作用,或者本研究可以为相关研究提供参考。

4.不足之处:任何一项研究由于客观条件的限制,不可能尽善尽美,都会或多或少存在一些不足之处,或者由于当前科技水平的限制,也会导致研究所存在的一些局限性,描述此部分内容时,一定要慎重。

尽量列出1~2个不影响本研究结论科学性和准确性的限制,比如本研究的样本含量较小,或者本研究随访时间较短等等,一般不要列出诸如本研究所用统计方法不当,或者本课题的所用评价标准不够成熟等。

5.研究心得:在文章最后,应说明本文所要传递的信息,或者是对后续研究的展望。一般文章最后写出本文要传递给读者什么有价值的知识或信息,也可以是给读者带来的启发。比如:“随着对不稳定型上颈椎结核性骨折的研究不断深入,探求一种既能实现理想的复位固定,又可保留寰枢椎关节活动功能的内固定方法是我们当前研究的方向。”

48 3816845
");