数学家数学知识点总结专业(精选8篇)
【请您参阅】下面供您参考的“数学家数学知识点总结专业(精选8篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
数学家数学知识点总结【第一篇】
1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。
2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。
3、课后复习:通预习一样,也是行之有效的方法。
4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。
5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。
6、建立纠错本:把经常出错的.题目集中在一起。
7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。
8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。
数学家数学知识点总结【第二篇】
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。
(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。
判定两个平面垂直的方法:(1)利用定义。
(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
夹在两个平行平面之间的平行线段相等。
经过平面外一点有且仅有一个平面与已知平面平行。
两条直线被三个平行平面所截,截得的对应线段成比例。
将本文的word文档下载到电脑,方便收藏和打印。
数学家数学知识点总结【第三篇】
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
数学家数学知识点总结【第四篇】
1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。
表示:圆柱用表示轴的字母表示。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。
表示:圆锥用表示轴的字母表示。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。旋转轴叫圆台的轴。垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。
表示:圆台用表示轴的字母表示。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。
表示:用表示球心的字母表示。
简单组合体的结构:
1、`由简单几何体组合而成的几何体叫简单组合体。现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。如教材图的前两个图形,他们是多面体与多面体的组合体;的后两个图形,他们是由一个多面体从中截去一个或多个多面体得到的组合体。
2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单简单几何体截去或挖去一部分而成的简单组合体。
将本文的word文档下载到电脑,方便收藏和打印。
数学家数学知识点总结【第五篇】
则有以下五种关系:
1、dr+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=r+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=r—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d。
5、d。
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
数学家数学知识点总结【第六篇】
三忌“好高骛远,忽视双基”
很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。
有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。
最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。
四忌“敷衍了事,得过且过”
数学家数学知识点总结【第七篇】
2、子集;。
3、补集;。
4、交集;。
5、并集;。
6、逻辑连结词;。
7、四种命题;。
8、充要条件。
1、映射;。
2、函数;。
3、函数的单调性;。
4、反函数;。
转载自
5、互为反函数的函数图象间的关系;。
6、指数概念的扩充;。
7、有理指数幂的运算;。
8、指数函数;。
9、对数;。
10、对数的运算性质;。
11、对数函数。
12、函数的应用举例。
1、数列;。
2、等差数列及其通项公式;。
3、等差数列前n项和公式;。
4、等比数列及其通顶公式;。
5、等比数列前n项和公式。
1、角的概念的推广;。
2、弧度制;。
3、任意角的三角函数;。
4、单位圆中的三角函数线;。
5、同角三角函数的基本关系式;。
6、正弦、余弦的诱导公式;。
7、两角和与差的正弦、余弦、正切;。
8、二倍角的正弦、余弦、正切;。
9、正弦函数、余弦函数的图象和性质;。
10、周期函数;。
11、函数的奇偶性;。
12、函数的图象;。
13、正切函数的图象和性质;。
14、已知三角函数值求角;。
15、正弦定理;。
16、余弦定理;。
17、斜三角形解法举例。
1、向量;。
2、向量的加法与减法;。
3、实数与向量的积;。
4、平面向量的坐标表示;。
5、线段的定比分点;。
6、平面向量的数量积;。
7、平面两点间的距离;。
8、平移。
1、不等式;。
2、不等式的基本性质;。
3、不等式的证明;。
4、不等式的解法;。
5、含绝对值的不等式。
1、直线的.倾斜角和斜率;。
2、直线方程的点斜式和两点式;。
3、直线方程的一般式;。
4、两条直线平行与垂直的条件;。
5、两条直线的交角;。
6、点到直线的距离;。
7、用二元一次不等式表示平面区域;。
8、简单线性规划问题;。
9、曲线与方程的概念;。
10、由已知条件列出曲线方程;。
11、圆的标准方程和一般方程;。
12、圆的参数方程。
1、椭圆及其标准方程;。
2、椭圆的简单几何性质;。
3、椭圆的参数方程;。
4、双曲线及其标准方程;。
5、双曲线的简单几何性质;。
6、抛物线及其标准方程;。
7、抛物线的简单几何性质。
1、平面及基本性质;。
2、平面图形直观图的画法;。
3、平面直线;。
4、直线和平面平行的判定与性质;。
5、直线和平面垂直的判定与性质;。
6、三垂线定理及其逆定理;。
7、两个平面的位置关系;。
8、空间向量及其加法、减法与数乘;。
9、空间向量的坐标表示;。
10、空间向量的数量积;。
11、直线的方向向量;。
12、异面直线所成的角;。
13、异面直线的公垂线;。
14、异面直线的距离;。
15、直线和平面垂直的性质;。
16、平面的法向量;。
17、点到平面的距离;。
18、直线和平面所成的角;。
19、向量在平面内的射影;。
20、平面与平面平行的性质;。
21、平行平面间的距离;。
22、二面角及其平面角;。
23、两个平面垂直的判定和性质;。
24、多面体;。
25、棱柱;。
26、棱锥;。
27、正多面体;。
28、球。
1、分类计数原理与分步计数原理;。
2、排列;。
3、排列数公式;。
4、组合;。
5、组合数公式;。
6、组合数的两个性质;。
7、二项式定理;。
8、二项展开式的性质。
1、随机事件的概率;。
2、等可能事件的概率;。
3、互斥事件有一个发生的概率;。
4、相互独立事件同时发生的概率;。
5、独立重复试验。
数学家数学知识点总结【第八篇】
1、平面的基本性质:
公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2过不在一条直线上的三点,有且只有一个平面;
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);
所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线
1、直线与平面垂直
定义:直线与平面内任意一条直线都垂直
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直
性质:垂直于同一直线的两平面平行
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面
2、平面与平面垂直
定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)
判定:一个平面过另一个平面的垂线,则这两个平面垂直
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
上一篇:大学职业规划书热选【精彩10篇】
下一篇:律师执业个人总结大全(优推8篇)