数学知识点总结精选4篇

网友 分享 时间:

【导言】此例“数学知识点总结精选4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初一数学知识点总结【第一篇】

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:

含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的'一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

北师大版数学的知识点【第二篇】

整数和整除的意义

1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,,叫做整数

2.在正整数1,2,3,4,5,,的前面添上号,得到的数1,2,3,4,5,,叫做负整数

3. 零和正整数统称为自然数

4.正整数、负整数和零统称为整数

5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或

者说b能整除a。

因数和倍数

1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数

3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身

4.一个数的倍数的个数是无限的,其中最小的倍数是它本身

能被2,5整除的数

1.个位数字是0,2,4,6,8的数都能被2整除

3.在正整数中(除1外),与奇数相邻的两个数是偶数

4.在正整数中,与偶数相邻的`两个数是奇数

5.个位数字是0,5的数都能被5整除

6. 0是偶数

素数、合数与分解素因数

1.只含有因数1及本身的整数叫做素数或质数

2.除了1及本身还有别的因数,这样的数叫做合数

3. 1既不是素数也不是合数

4.奇数和偶数统称为正整数,素数、合数和1统称为正整数

5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数

6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数: 树枝分解法,短除法

公因数与最大公因数

1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数

4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数

5.如果两个数是互素数,那么这两个数的最大公因数是

20142016年的六年级数学知识点为您带来了,希望你从中得到了你想要了解的知识。

数学知识点总结【第三篇】

一、分数除法的意义和分数除以整数

知识点一:分数除法的意义

整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

知识点二:分数除以整数的计算方法

把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:

(1)用分子和整数相除的商做分子,分母不变。

(2)分数除以整数,等于分数乘这个整数的倒数。

二、一个数除以分数

知识点一:一个数除以分数的计算方法

一个数除以分数,等于这个数乘分数的倒数。

知识点二:分数除法的统一计算法则

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系

一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。

三、分数除法的混合运算

知识点一:分数除加、除减的运算顺序

除加、除减混合运算,如果没有括号,先算除法,后算加减。

知识点二:连除的计算方法

分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

知识点三:不含括号的分数混合运算的运算顺序

在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。

知识点四:含有括号的分数混和运算的运算顺序

在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

知识点五:整数的运算定律在分数混和运算中的运用

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。

初一数学知识点总结【第四篇】

知识点1:正、负数的概念:我们把像3、2、+、%这样的数叫做正数,它们都是比0大的数;像-3、-2、-、-%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的`本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

35 2231092
");