有理数的除法的概念实用

网友 分享 时间:

【导读预览】此篇优秀范文“有理数的除法的概念实用”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

有理数的除法的概念篇1

法则一、除以一个不等于0的数等于乘这个数的倒数。(注意:0没有倒数)公式:a÷b=a×1/b

法则二、两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)公式:a÷b=a×1/b(b≠0)

分数的符号法则

(1)分数的符号法则:分数的分子、分母与分数线前面的符号,改变其中任意两个的符号,分数的

值不变。用公式表示:

(2)利用分数的符号法则化简分数规律:在分子、分母及分数线前的符号中,如果“﹣”号的个数是奇数,则分数的值为负,如果“﹣”号的个数是偶数,分数的值为正。

有理数的除法的概念篇2

有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。

实数(r)可以分为有理数(q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。

有理数(q)

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=, 4/5=。

无理数(r-q)

无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。

二者区别

有理数和无理数都能写成小数形式,但是,有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。

简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。

48 1291385
");