三角形面积的教案的教学反思大全【4篇】
【导读预览】此篇优秀范文“三角形面积的教案的教学反思大全【4篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
三角形面积的教案的教学反思【第一篇】
“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。
在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。
充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。
本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。
纵观这个教学过程,初步体现了提出问题———大胆猜测———反复验证———总结规律———灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展。
三角形面积的教案的教学反思【第二篇】
教学内容:人教版第九册第三单元的《三角形面积的计算》。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:掌握三角形面积的计算方法。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
三角形面积的教案的教学反思【第三篇】
作者:李胜国邮箱:lghmjl@作者单位:河北省临城县鸭鸽营乡忠信中心小学简介:课件名称:三角形、梯形基础知识及面积推导。
适用于人教版五年制数学第七册。
课件通过“基础知识”来演示说明三角形和梯形各部分名称及高的画法,
“公式推导”来动态演示三角形和梯形面积公式的推导过程。
“巩固应用”中设计了三道练习题以巩固所学的知识。
说明:因为自己非常喜欢“枯枝”这个名字,所以在开头加了一个“枯枝作品”的动画。
相关课件:三角形面积的教案的教学反思【第四篇】
教学理念:
数学学习不应是简单的个体受动过程,更是一个主体对自己感兴趣的且是现实的生活性主题的探索与发现的过程。而这种探索与发现过程,就是儿童自己去观察,思考,讨论,试验,亲身体验了知识的建构过程,使其终身收益。
教学目标:
1.通过练习使学生进一步熟悉三角形的面积的计算公式,能够比较熟练地计算三角形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3.多元评价学生,并培养学生初步的几何知识。
教学重点与难点:
学生难灵活三角形面积公式。在学习时可借助方程的知识解决问题。
媒体与手段运用:
多媒体
教学环节:
一、复习阶段
1、出示
问:这是一个三角形,要求它的面积必须知道什么?(学生回答后指名到黑板前量出这个三角形的底和高。)
问:知道了三角形的底和高,怎样求也它的面积?用哪个公式?(学生回答后教师板书:s=ah2)
问:这个三角形的面积是多少?(学生独立计算)
二、新授内容
1、出示练习十四第7题
(1)教师讲解,学生试做。
(2)让学生尝试用方程完成。
2、练习十四第6题(学生读题,并请同学讲讲自己的思路。)
教师提醒学生在求三角形面积时要注意除以2。
3、练习十四第9题。(学生试做)
分析题意,学生注意单位之间的转化。
4、讲解等底等高的三角形面积相等。
5、把一个三角形分成四个面积相等的三角形,可以怎么分?
学生自己先试分,然后上台反馈答案。
三、巩固练习
课后做一做
学生在做的过程中,注意面积单位。
四、总结
今天我们学习了三角形面积计算公式,我们是通过转化的方法来推导出。这种方法在今后还可以多次进行运用。