数学基础知识【实用3篇】
数学基础知识包括数的性质、运算规则、代数、几何、统计与概率等,掌握这些有助于解决实际问题与逻辑思维。如何能更好地运用这些知识呢?以下是网友为大家整理分享的“数学基础知识”相关范文,供您参考学习!
数学基础知识 篇1
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
4.列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价—成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
数学基础知识 篇2
一、整数和小数
1.最小的一位数是1,最小的自然数是0
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:小数有限小数
无限循环小数
无限小数
无限不循环小数
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
二、数的整除
1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。
最小的质数是2,最小的合数是4
1~20以内的质数有:2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
三、四则运算
1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四、关系式
1.速度×时间=路程路程÷时间=速度路程÷速度=时间
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
单价×数量=总价总价÷数量=单价总价÷单价=数量
五、方程
1.方程:含有未知数的等式叫做方程。
2.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3.解方程:求方程解的过程叫做解方程。
六、分数和百分数
1.分数的意义:把单位”1“平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:把单位”1“平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:分数可以分为真分数和假分数。
5.真分数:分子小于分母的分数叫做真分数。真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用”%“来表示。
七、量的计量
1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率
面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:吨、千克、克,写出它们之间的进率。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。
小月有:4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法
3.一年有4个季度,每个季度3个月。
4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
复名数:带有两个或两个以上单位名称的.叫做复名数。
6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
八、几何初步知识
1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。
1.计量角的大小的单位:度,用符号”°“表示。
2.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180°。
3.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
4.平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。
(画图说明)平行线之间垂直线段的长度都相等。
5.三角形:有三条线段围成的图形叫做三角形。
6.三角形的分类:
(1)按角分:锐角三角形、钝角三角形、直角三角形。
(2)按边分:一般三角形、等腰三角形、等边三角形。
7.三角形三个内角和是180°。
8.四边形:由四条线段围成的图形。
9.圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
10.圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
11.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
12.学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形
13.周长:围成一个图形的所有边长的总和就是这个图形的周长。面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
14.表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。体积:物体所占空间的大小叫做物体的体积。
15.长方体、正方体都有12条棱,6个面,8个顶点。正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
16.圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆
17.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。
18.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
19.圆周率π是一个无限不循环小数。π=……
20.把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。
21.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
22.等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的,圆锥的高是圆柱的3倍。
九、比和比例
1.比的意义:两个数相除又叫做两个数的比。
比例的意义:表示两个比相等的式子叫做比例。
2.求比值:比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;
应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系。
a:b=a÷b=(b≠0)
6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺
或=比例尺
实际距离=图上距离÷比例尺图上距离=实际距离×比例尺
8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示:=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线。
十、简单的统计
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
十一、公式的整理
平面图形:
1.长方形:
周长=(长+宽)×2C长=(a+b)×2
面积=长×宽S长=a×b
2.正方形:
周长=边长×4C正=a×4
面积=边长×边长S正=a×a
3.平行四边形的面积=底×高S平=ah
4.三角形的面积=底×高÷2S三=ah÷2
5.梯形的面积=(上底+下底)×高÷2S梯=(a+b)×h÷2
6.圆的周长=直径×圆=πd
圆的周长=半径×2×圆=2πr
圆的面积=半径的平方×圆周率S圆=πr2
立体图形:
1.长方体
表面积=(长×宽+长×高+宽×高)×2S长表=(ab+ah+bh)×2
体积=长×宽×高V长=abh
2.正方体
表面积=棱长×棱长×6S正表=a×a×6
体积=棱长×棱长×棱长V正=a3
3.圆柱
侧面积=底面周长×高
表面积=侧面积+两个底面积
体积=底面积×高
4.以上立体图形的表面积、体积可以统一成公式为:
表面积=底面周长×高+两个底面积体积=底面积×高
5.圆锥的体积=圆柱的体积÷3V锥=sh÷3
数学基础知识 篇3
一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
初中数学知识点:直线的位置与常数的关系
①k>0则直线的倾斜角为锐角
②k<0则直线的倾斜角为钝角
③图像越陡,|k|越大
④b>0直线与y轴的`交点在x轴的上方
⑤b<0直线与y轴的交点在x轴的下方