六年级奥数题答案题解析大全优质10篇

网友 分享 时间:

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“六年级奥数题答案题解析大全优质10篇”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

六年级奥数题答案题解析【第一篇】

据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。

六年级。

1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。

2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:

36×(4n+2)=3096。

144n+72=3096。

n=21。

答:n是21。

六年级奥数题答案题解析【第二篇】

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

解答:解:45+5×3。

=45+15。

=60(千克)。

答:3箱梨重60千克。

点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。

来自

六年级奥数题答案题解析【第三篇】

口诀:

和加上差,越加越大;。

除以2,便是大的;。

和减去差,越减越小;。

除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

已知整体求部分。

口诀:

家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;。

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

口诀。

我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,

乘以各自的倍数,

两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。

先求一倍的量,12/(7-4)=4,

所以甲数为:4x7=28,乙数为:4x4=16。

口诀:

假设全是鸡,假设全是兔。

多了几只脚,少了几只足?

除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36,有脚120,求鸡兔数。

(1)加水稀释。

口诀:

加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

加水先求糖,原来含糖为:20x15%=3(千克)。

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)。

(2)加糖浓化。

口诀:

加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20x(1-15%)=17(千克)。

水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=(千克)。

(1)相遇问题。

口诀:

相遇那一刻,路程全走过。

除以速度和,就把时间得。

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)。

(2)追及问题。

口诀:

慢鸟要先飞,快的随后追。

先走的路程,除以速度差,

时间就求对。

先走的路程,为3x2=6(千米)。

速度的差,为6-3=3(千米/小时)。

所以追上的时间为:6/3=2(小时)。

口诀:

全盈全亏,大的减去小的;。

一盈一亏,盈亏加在一起。

除以分配的.差,

结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?

一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)。

例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?

口诀:

每牛每天的吃草量假设是份数1,

a头b天的吃草量算出是几?

m头n天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值,

结果就是草的生长速率。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

有的草量除以剩余的牛数就将需要的天数求知。

结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

所以原有的草量=27x6-6x15=72(牛/天)。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。

所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。

口诀:

岁差不会变,同时相加减,

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?

岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。

岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

六年级奥数题答案题解析【第四篇】

答案与解析:(1)最佳修理顺序为先处理修复时间最短的车床,依次为3分钟、8分钟、9分钟、15分钟、29分钟,按此顺序,停产时间最少:3*5+8*4+9*3+15*2+29*1=133(分钟)最低经济损失:133*10=1330(元)。

(2)如果有两名修理工,一名修理工按3分钟,9分钟,29分钟,修理顺序,另一名修理工按8分钟,15分钟,顺序修理。

最少停产时间3*3+(8+9)*2+(15+29)*1=87(分钟)。

最低经济损失:10*87=870(元)。

六年级奥数题答案题解析【第五篇】

甲、乙、丙、丁四人经常为学校做好事。星期天,校长发现大操场被打扫得干干净净,找来他们四人询问:

甲说:“打扫操场的在乙、丙、丁之中。”

乙说:“我没打扫操场,是丙扫的。”

丙说:“在甲和乙中间有一人是打扫操场的。”

丁说:“乙说的是事实。”

答案与解析:

已知四人中有两人说真话,有两人说的是假话,所以从这一点出发进行推理。

注意乙和丁的说法一致,所以这表明他俩要么同说真话,要么同说假话,同样可以推理出甲和丙也是同说真话或同说假话。但是甲和丙中至少有一个人说真话,因为他们指明了做好事的在四人中,所以甲、丙同说真话,再根据她们说的话可以判断乙是打扫操场的人。

六年级奥数题答案题解析【第六篇】

答案:350分。

分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。按此方法,可以把小李和小赵两人各有多少钱计算出来。

详解:因为50÷9=5……5,所以小赵有钱。

5×7+4=39(分)。

又因为500÷9=55……5,所以小李有钱。

55×7+4=389(分)。

因此小李的钱比小赵多。

六年级奥数题答案题解析【第七篇】

原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土方。

答案:

方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。

解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,

原计划每人每天挖土的方数:1÷(1/3)=3(方)。

所以24x(y-5)=18(x+1)×(y-5),

根据题意得出y必须大于5,

所以24x=18x+18。

6x=18。

x=3。

答:原计划每人每天挖土3方,故答案为3。

六年级奥数题答案题解析【第八篇】

答案与解析:单打每张球桌2人,双打每张球桌4人。

如果10桌全是单打,出场的.球员将只有20人。

但是现在有32人出场,多12人。

每拿一桌单打换成双打,参赛的球员多出2人。

要能多出12人,应该有6桌换成双打。

是:6桌双打,4桌单打。

这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。

也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。

每张球桌沿着中间的球网分成左右两半,只考虑左半边。

单打的球桌左半边站1个人,双打的球桌左半边站2个人。

10张球桌两边共站32个人,左半边共站16个人。

六年级奥数题答案题解析【第九篇】

网友导语:根据一年级

同学

课上

学习

的'知识点,巨人数学网为同学们精心准备了

小学

一年级奥数题,本道奥数题是

关于

小学举办足球赛的试题,这是一道很有代表性的试题,请同学们认真做题,并总结同类型试题应该注意的事项,避免以后再犯同类错误。

答案:方法一:用圆圈表示小学,用线段表示比赛,画示意图如下:

由图得,一小和二小、三小、四小、五小、六小(黑色线段)共赛5场;

二小再和三小、四小、五小、六小(绿色线段)共赛4场;

三小再和四小、五小、六小(橙色线段)共赛3场;

四小再和五小、六小(棕色线段)共赛2场;

五小再和六小(蓝色线段)共赛1场;

比赛场次总数为5+4+3+2+1=15(场)

方法二:每个学校都要和

其他

的五个学校各赛一场,共5场。因而六个学校所赛的场次是5×6=30场。但是这样计算还有个问题,比如说一小和二小赛了一场,这一场比赛被两个学校都计算在了自己所赛的场次里,因而被计算了两次。所以总场数也就多计算了一倍,也就是说,六个学校实际赛的总场次数是30÷2=15(场)。

六年级奥数题答案题解析【第十篇】

考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.

解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:

10x﹣x=288,

9x=288,

x=32;。

则桌子的价格是:32×10=320(元),

答:一张桌子320元,一把椅子32元.

点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。

48 2673789
");